

Oracle® Communications

Diameter Signaling Router

Diameter Custom Applications with Unified Data Repository Programmer Guide

Release 8.5.1

F51155-01

December 2021

2 of 96

Oracle Communications, DSR Release Notice, Release 8.5.1

Copyright © 2011, 2021, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly

permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,

broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-

free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone

licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated

software, any programs installed on the Hardware, and/or documentation, delivered to U.S.

Government end users are "commercial computer software" pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,

disclosure, modification, and adaptation of the programs, including any operating system, integrated

software, any programs installed on the Hardware, and/or documentation, shall be subject to license

terms and license restrictions applicable to the programs. No other rights are granted to the U.S.

Government.

This software or Hardware is developed for general use in a variety of information management

applications. It is not developed or intended for use in any inherently dangerous applications,

including applications that may create a risk of personal injury. If you use this software or Hardware

in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,

redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim

any liability for any damages caused by use of this software or Hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC

trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open

Group.

This software or Hardware and documentation may provide access to or information about content,

products, and services from third parties. Oracle Corporation and its affiliates are not responsible for

and expressly disclaim all warranties of any kind with respect to third-party content, products, and

services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

your access to or use of third-party content, products, or services, except as set forth in an applicable

agreement between you and Oracle.

DCA Programmer's Guide 3 of 96

Table of Contents

1 INTRODUCTION ... 8

1.1 REFERENCES... 8
1.2 GLOSSARY ... 8
1.3 TERMINOLOGY ... 9

2 DCA ACTIVATION AND DEACTIVATION .. 10

2.1 DCA ACTIVATION ... 10
2.1.1 DCA Framework Activation .. 10
2.1.2 DCA App Activation .. 11
2.1.3 Post-Activation DCA App State .. 12

2.2 DCA DEACTIVATION .. 12
2.2.1 DCA Application De-Activation .. 12
2.2.2 DCA Framework De-Activation .. 13

3 DCA APP PROVISIONING – THE “BLACKLIST” DCA APP ... 14

3.1 THE „BLACKLIST“ DCA APP .. 14
3.2 PREREQUISITES ... 14
3.3 THE PROCESS ... 14

3.3.1 Step 1: Configure the DCA App's General Options and Behavior ... 14
3.3.2 Step 2: Create New Development Application Version .. 15
3.3.3 Step 3: Define the configuration data structure .. 15
3.3.4 Step 4: Provision the Configuration Data ... 16
3.3.5 Step 5: Provision the Business Logic ... 18

3.3.5.1 Where is the Perl script being executed? .. 19
3.3.5.2 How do the Event Handlers get invoked? ... 19
3.3.5.3 How does the DCA App configuration data get accessed? .. 19
3.3.5.4 What is the „main part“ good for? .. 20

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax... 20
3.3.7 Step 7: Test the DCA App Version .. 21
3.3.8 Step 8: Promote the DCA App Version to Production State ... 22

4 DCA APPLICATION LIFECYCLE ... 24

5 DEVELOPING STATEFULL DCA APPS ... 27

6 A STATEFULL DCA APP USING THE UDR DB .. 28

6.1 THE „COUNTULR“ DCA APP .. 28
6.2 PREREQUISITES ... 28
6.3 THE PROCESS ... 28

6.3.1 Step 1: Configure the DCA App's Global Options and Behavior ... 29
6.3.2 Step 2: Create a New Development Version .. 29
6.3.3 Step A: Configure the UDR DBs .. 29

6.3.3.1 Configure UDR DB as Remote server ... 29
6.3.3.1.1 ComAgent Configuration on DSR .. 29
6.3.3.1.2 Comagent Configuration on UDR ... 31
6.3.3.1.3 Comagent Connection Status Validation .. 31

6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application ... 34
6.3.3.3 Audit Time Configuration on Active UDR NOAM ... 34

6.3.4 Step 3: Define the Configuration Data Schema ... 35
6.3.5 Step 4: Provision the Configuration Data ... 35
6.3.6 Step 5: Provision the DCA App Business Logic .. 35

6.3.6.1 What does a “state” consist of? .. 38
6.3.6.2 What are Asynchronous API Calls and Callbacks? ... 38
6.3.6.3 How is the UDR state returned to the Perl script? .. 38

6.3.7 Step 6: Render the Flow Control Chart ... 38

4 of 96 DCA Programmer's Guide

6.3.8 Step 7: Test the DCA App Version .. 39
6.3.9 Step 8: Promote the DCA App Version to Production ... 39

7 MONITORING A DCA APP ... 40

8 A DCA APP USING CUSTOM MEALS .. 41

8.1 THE „RATE“ DCA APP ... 41
8.2 PREREQUISITES ... 41
8.3 THE PROCESS ... 41

8.3.1 Step I: Differentiate a C-MEAL ... 42
8.3.2 Step 1: Configure the DCA App's General Options and Behavior ... 42
8.3.3 Step 2: Create a New Development Version .. 42
8.3.4 Step 3: Define the Configuration Data Schema ... 42
8.3.5 Step 4: Provision the Configuration Data ... 42
8.3.6 Step 5: Provision the DCA App Business Logic .. 42
8.3.7 Step 6: Render the Flow Control Chart ... 43
8.3.8 Step 7: Test the DCA App Version .. 43
8.3.9 Step 8: Promote the DCA App Version to Production ... 46

9 GUI OVERVIEW .. 47

9.1 NO/SO DIFFERENCES .. 47
9.2 NO SCREENS.. 47

9.2.1 Configuration Screen ... 48
9.2.2 Custom MEALs ... 48

9.2.2.1 View Custom MEALs .. 48
9.2.2.2 Configure the Counter Custom MEAL Template.. 49
9.2.2.3 Configure the Basic Custom MEAL Template .. 49
9.2.2.4 Configure the Rate Custom MEAL Template ... 50
9.2.2.5 Configure the Event Custom MEAL Template ... 51

9.2.3 General Options Screen.. 52
9.2.4 Trial MPs Assignment Screen ... 53
9.2.5 Application Control Screen ... 53
9.2.6 Create New Development Screen .. 54
9.2.7 Copy to New Development Screen ... 54
9.2.8 Export Pop-Up Window .. 55
9.2.9 Import Pop-Up Window ... 56
9.2.10 Development Environment .. 57
9.2.11 Tables Screen ... 57
9.2.12 Provision Tables Screen ... 60

9.3 SO SCREENS .. 62
9.3.1 Application Control Screen ... 62
9.3.2 Export Pop-Up Window .. 63
9.3.3 Import Pop-Up Window ... 63
9.3.4 Tables Screen ... 63
9.3.5 Provision Tables Screen .. 64

9.4 SYSTEM OPTIONS .. 65

10 APIS ... 68

10.1 THE EDL API ... 68
10.1.1 API to Manipulate the Diameter Header ... 68
10.1.2 API to Manipulate the Diameter AVPs ... 72
10.1.3 API to Manipulate the Diameter Grouped AVPs .. 76

10.2 DIAMETER TRANSACTION STATEFUL APIS .. 78
10.2.1 Internal Variables .. 78
10.2.2 Diameter Transaction Context Variables ... 78

10.3 READ DCA APP CONFIGURATION DATA .. 79
10.4 ROUTING API... 80

DCA Programmer's Guide 5 of 96

10.5 DEBUGGING API ... 81
10.6 CUSTOM MEAL API ... 82

10.6.1 Counter Template API .. 82
10.6.2 Rate Template ... 84
10.6.3 Basic Template ... 86
10.6.4 Event Template .. 89

10.7 UDR API .. 90
10.7.1 The Prototype of Queries and Query Results ... 90

10.7.1.1 Specifying the Query ... 90
10.7.1.2 Retrieving the Query Result... 92

10.7.2 The UDR API Functions .. 92
A.1 NOTES .. 96

6 of 96 DCA Programmer's Guide

List of Figures

Figure 1: DCA Activation- Deactivation Lifecycle.. 10
Figure 2 DCA Framework Menu ... 11
Figure 3 DCA Measurements.. 11
Figure 4: DCA KPIs ... 11
Figure 5: DCA Application Menu ... 12
Figure 6: Create a New Application Version ... 15
Figure 7: New Application Version Created .. 15
Figure 8: Create a New Database .. 16
Figure 9: Provision Table "BlackList" .. 17
Figure 10: Insert a new data row to the "BlackList" table ... 17
Figure 11: Provision DCA DB Tables .. 18
Figure 12 The "Blacklist" DCA App Development Environment .. 18
Figure 13 "Blacklist" Perl Code ... 19
Figure 14 Event Handler Subroutine Name Configuration ... 19
Figure 15 Development Environment Buttons .. 21
Figure 16: Trial MP Assignment .. 22
Figure 17 Transitions from Development to Production State .. 24
Figure 18 Creating a New DCA App Version .. 25
Figure 19: Assignment of the Version to a DA-MP ... 26
Figure 20: “CountULR” Call Flow .. 35
Figure 21: “CountULR” Perl Code ... 38
Figure 22: Flow Control Chart ... 39
Figure 23 TestRate Differentiation .. 42
Figure 24 The "Rate" DCA App Code ... 43
Figure 25 Filter the DCA:Rate KPIs .. 44
Figure 26 Display TestRate KPI .. 44
Figure 27 Filter the DCA:Rate Measurements ... 45
Figure 28 Display the TestRate measurements.. 45
Figure 29 TestRate Alarm History .. 46
Figure 30: NO Screens ... 48
Figure 31: NO Configuration Screen ... 48
Figure 32 The Custom MEAL View Screen ... 49
Figure 33 The Counter Template Configuration Screen .. 49
Figure 34 The Basic Template Configuration Screen .. 50
Figure 35 The Rate Template Configuration Screen ... 51
Figure 36 The Event Template Configuration Screen ... 52
Figure 37: NO General Options .. 52
Figure 38: NO Trial MPs Assignment ... 53
Figure 39: NO Application Control .. 54
Figure 40: NO Create New Development Screen ... 54
Figure 41: NO Copy to New Development .. 55
Figure 42: NO Export .. 56
Figure 43: NO Import Business Logic ... 56
Figure 44: NO Import Configuration Data ... 57
Figure 45: NO Tables View Screen .. 58
Figure 46: NO Tables Insert Screen ... 59
Figure 47: Provision Table button ... 60
Figure 48: NO Provision Table View Screen .. 61
Figure 49: NO Provision Table Insert Screen ... 61
Figure 50: SO Screens .. 62
Figure 51: SO Application Control Screen .. 63
Figure 52: SO Tables View Screen (empty) ... 64
Figure 53: System Options for the "Unavailable" Operation Status.. 65
Figure 54: System Options for the Exhausted DRL Resources .. 66
Figure 55: System Options for the Run-Time Error .. 66
Figure 56: System Options for the Realm and FQDN .. 66
Figure 57: System Options for the Application Invocation .. 67

DCA Programmer's Guide 7 of 96

List of Tables

Table 1: NO/SO GUI differences .. 47
Table 2: NO GUI tables and configuration data accessibility .. 58
Table 3: SO GUI tables and Configuration data accessibility ... 64

8 of 96 DCA Programmer's Guide

1 Introduction

Diameter Custom Applications (DCA) is a framework that enables a significant reduction of the

coding – testing – deployment – maintenance cycle in the development of Diameter applications.

The present document is intended to developers of DCA Apps. It describes how DCA Apps can be

created, how their business logic and configuration data can be provisioned, how their lifecycle from

development to production can be managed, as well as the various APIs available.

Following the DCA Framework and DCA Apps activation (chapter 2), the document is organized

around three DCA Apps examples: "Blacklist" (chapter 3), "CountULR" (chapter 6) and "Rate"

(chapter 8), which demonstrate the basic features of the DCA Framework. A number of additional

chapters, interleaved with the chapters describing the three DCA Apps provide a gradual insight into

essential capabilities of the DCA framework, like the DCA App lifecycle management (chapter 4),

statefull DCA Apps development mechanisms (chapter 5) and tools for monitoring the execution of

DCA Apps (chapter 7).

Chapter 9 provides a complete GUI reference.

The various APIs available are described in chapter 10.

1.1 References

[1] DCA Framework and Application Activation and Deactivation

[2] DCA Development Environment

[3] DSR Software Installation and Configuration Procedure

1.2 Glossary

This section lists terms and acronyms specific to this document.

Acronym Description

API Application Programming Interface

ART Application Routing Table

AVP Attribute Value Pair (in context of Diameter protocol)

ComAgent Communication Agent

DA-MP Diameter Agent Message Processor

DAI DSR Application Infrastructure

DAL Diameter Application Layer

DBCA Database Change Agent

DCA Diameter Custom Applications (framework)

DRL Diameter Routing Layer

DSR Diameter Signaling Router

EDL Encode-Decode Library

UDR Unified Data Repository

JSON Java Script Object Notation

MEAL Measurement, Event and Alarm

MO Managed Object

NOAM Network Operations Administration and Maintenance

OAM Operations, Administration & Maintenance

OID Object Identifier (SNMP)

Perl “Practical Extraction and Reporting Language” – a scripting

language

PRT Peer Routing Table

SNMP Simple Network Management Protocol

SOAM Site Operations Administration and Maintenance

DCA Programmer's Guide 9 of 96

TTR Trace Transaction Record (in context of IDIH)

1.3 Terminology

Acronym Description

A-Level NOAM –level

Asynchronous

Call Symbol

Symbol in the Development Environment that represents a code

statement that calls an asynchronous function provided by the

DCA Perl API. The code statement occurs within a preceding

Execution Block. The symbol displays the name of an

asynchronous function that is invoked.

B-Level SOAM- level

DCE

Development

Environment

Web application where a custom Diameter application developer

can edit, save, check syntax, compile the application code for a

Diameter Custom Application and generate an Interactive Flow

Control Chart from the application code.

Execution

Block Symbol

Symbol in the Development Environment that corresponds to an

application subroutine where the name of the symbol is also the

name of the subroutine.

Internal

Variable

A storage mechanism that allows persistence during a Diameter

transaction lifetime.

Start Symbol Symbol in the Development Environment that marks the start of

execution for the application.

Termination

Symbol

Symbol in the Development Environment that represents an end

point of the application execution.

10 of 96 DCA Programmer's Guide

2 DCA Activation and Deactivation

Activation and deactivation are standard procedures that enable DSR applications in general and DCA

Apps in particular to be “installed” and “uninstalled” on a network.

2.1 DCA Activation

In order to start developing a new DCA App, the following two steps need to be performed:

▪ Activation of the DCA framework on the NO. See Procedure 5 in [1] for the instructions.

This step needs to be performed only once for a given network.

▪ Activation of the new DCA App on the NO. See Procedure 6 in [1] for the instructions.

This step has to be performed once per DCA App (similar to native DSR applications). Note

however that only a limited number of DCA Apps (currently 5) can be simultaneously

activated. Therefore, old DCA Apps may need to be deactivated in order to make room to

new DCA Apps.

Figure 1 provides an overview of the activation-deactivation lifecycle.

Figure 1: DCA Activation- Deactivation Lifecycle

2.1.1 DCA Framework Activation

When the DCA framework is initialized, the DCA Framework folder with the Configuration file

becomes visible in the left side menu (Figure 2).

DCA Programmer's Guide 11 of 96

Figure 2 DCA Framework Menu

All the measurements (Figure 3) and KPIs (Figure 4) associated with the DCA Framework become

visible as well.

Figure 3 DCA Measurements

Figure 4: DCA KPIs

2.1.2 DCA App Activation

When the new DCA App is activated, the DCA App subfolder with the name provided by the user

during the activation procedure becomes visible in the left side menu (Figure 5). The DCA App

subfolder includes the screens for enabling the business logic and provisioning configuration data.

The DCA App becomes visible across DSR (ART, maintenance screen, etc.).

12 of 96 DCA Programmer's Guide

Figure 5: DCA Application Menu

2.1.3 Post-Activation DCA App State

Following the activation procedure, the DCA App is in the disabled state. While in disabled state,

Diameter traffic will not be delivered to the DCA App. First, the DCA App must be enabled from the

SO Main Menu: Diameter→Maintenance→Applications. Note that on this screen the DCA App is

identified by the "short name" configured by the user during the DCA App activation procedure.

Independently from the enabled/disabled state of the DCA App, at this stage no version of the DCA

App has been provisioned yet. As a result, there is no version in “Production” and “Trial” state. As long

as no “Production” or “Trial” version is available for a DA-MP to run, the DCA App‘s operational

status will be “unavailable”(see Main Menu: Diameter→Maintenance→Applications, on the SO).

The behavior of a DCA App while in operational state “unavailable” (provided that the DCA App has

been enabled) is configurable on the SO from the Main Menu:DCA Framework→<DCA App

Name>→System Options (see section 9.4); possible options are dropping the Diameter request,

forwarding the Diameter request or returning a Diameter answer with a configurable error code.

From this point on the user can provision the configuration and business logic for the DCA App.

2.2 DCA Deactivation

The deactivation procedures enable a DCA App and respectively the DCA framework to be removed

from a given network.

2.2.1 DCA Application De-Activation

The deactivation of a DCA App will not be allowed as long as versions of the respective DCA App are

still in “Production” and/or a “Trial” state (see chapter 4).

Following deactivation, the DCA app‘s GUI folder under „DCA Framework“ menu item will disappear.

The DCA App will be deregistered from the ART, its KPIs and measurements will not be displayed and

respectively reported any longer.

DCA Programmer's Guide 13 of 96

2.2.2 DCA Framework De-Activation

DCA framework deactivation will not be allowed as long as at least one DCA App is activated in the

network.

Following deactivation, the DCA framework GUI folder will disappear from the left-hand GUI menu.

14 of 96 DCA Programmer's Guide

3 DCA App Provisioning – The “Blacklist” DCA App

This section is a learning by doing guide to provisioning the configuration data and business logic for

a simple DCA App.

3.1 The „Blacklist“ DCA App

The “Blacklist” DCA App checks the Origin-Host AVP of incoming Diameter requests and verifies

whether it is blacklisted or not. In case the Origin-Host is blacklisted, the Diameter request will be

dropped, otherwise the Diameter request will be forwarded unchanged.

3.2 Prerequisites

The DCA Framework must have been previously activated as described in [1]. Also, a DCA App with

the name “Blacklist” shall be activated as described in [1].

The “Blacklist” DCA App has to be enabled on all the DA-MPs in the network from the SO Main

Menu: Diameter→Maintenance→Applications.

An ART rule shall be added that enables Diameter messages to be delivered to the “Blacklist” DCA

App.

3.3 The Process

The following step must be followed in order to provision the “Blacklist” DCA App:

Step 1: Configure the general options and behavior of the "Blacklist" DCA App;

Step 2: Create a new development version of the “Blacklist” DCA App;

Step 3: Define the structure of tables to store the “Blacklist” configuration data;

Step 4: Provision the “Blacklist” configuration data;

Step 5: Provision the “Blacklist” business logic – essentially a Perl script;

Step 6: Render the Flow Control Chart based on the Perl script. Save and perform syntax checks;

Step 7: Test the “Blacklist” DCA App: configure the Trial DA-MPs and promote “Blacklist” to Trial

state;

Step 8: Compile “Blacklist”, promote “Blacklist” to Production state.

3.3.1 Step 1: Configure the DCA App's General Options and Behavior

At this stage there is no version available for the “Blacklist” DCA App. As a result, the DCA App will

be in the operational state “Unavailable”. No traffic is forwarded to the “Blacklist” DCA App and for

outside observers the DCA App behaves as specified in the SO screen Main Menu: DCA

Framework→<DCA App Name>→System Options, Application unavailable configuration

section (see also 9.4).

The Run-time error configuration section of the same screen defines the behavior of the DCA App

in case a runtime error occurs during the execution of the event handlers.

Finally, the DCA App programmer must ensure that the names specified on the NO screen Main

Menu: DCA Framework→<DCA App Name>→General Options (see section 9.2.3) for the

Diameter request and answer event handlers (Perl subroutines) are consistently used in the Perl script.

For "Blacklist" in particular, “Perl Subroutine for Diameter Answer” shall be left empty because there

is no event handler defined to process the Diameter answers.

DCA Programmer's Guide 15 of 96

3.3.2 Step 2: Create New Development Application Version

Go to the Main Menu: DCA Framework→<DCA App Name>→Application Control screen on

the NO and click “Create New Development” (see Figure 6). The “Create New Development”

screen will be displayed. Specify a name for the newly created “Blacklist” version and optionally

provide comments (e.g. author name, brief description of the business logic, etc.). Figure 7 shows the

newly created version.

Figure 6: Create a New Application Version

Figure 7: New Application Version Created

3.3.3 Step 3: Define the configuration data structure

Select the newly created development application version on the “Application Control” screen and

click “Config Tables and Data”. The “Tables” screen (Figure 8) will open. Click the “Insert” button

on the “Tables” screen and create a new configuration table for provisioning the blacklist. The

“Blacklist” DCA App configuration table contains only one field: OriginHost, which is of type

DiameterIdentity, see Figure 8).

16 of 96 DCA Programmer's Guide

Figure 8: Create a New Database

Note: In this example the configuration table is defined at the NO level. That means the configuration

table will be replicated to all the DA-MPs in the network.

Alternatively, a configuration table may be defined at the SO level. That means, while its structure is

defined across the entire NO, its content will be replicated only to the DA-MPs in each individual SO.

In this way distinct SOs may use different configuration data (see 9.3.5).

3.3.4 Step 4: Provision the Configuration Data

Once the structure of the “Blacklist” table is defined, the table will show up in the “Tables” screen.

Select it and click “Provision Table” button. The “Provision Table View” screen will open (Figure

9). Click the “Insert” on the “Provision Table” View screen and insert all the blacklisted Origin-

Hosts to the table one by one (Figure 10).

DCA Programmer's Guide 17 of 96

Figure 9: Provision Table "BlackList"

Figure 10: Insert a new data row to the "BlackList" table

18 of 96 DCA Programmer's Guide

Figure 11: Provision DCA DB Tables

3.3.5 Step 5: Provision the Business Logic

Go back to the “Application Control” screen, select the application version and click the

“Development Environment” button.

In the development environment the user can edit, save, check syntax and compile the DCA App's

Perl code, which defines the business logic that the DCA App implements. Additionally, an

interactive Flow Control Chart is rendered based the DCA App's Perl script. The Flow Control Chart

provides an overview of the control flow within the DCA App and is particularly useful in following

the asynchronous calls and indicating the terminating actions (forward, drop or return answer).

See [2] for more details on Development Environment.

The development environment of the “Blacklist” DCA App is illustrated in Figure 12.

Figure 12 The "Blacklist" DCA App Development Environment

First, the DCA App programmer has to write in the right-hand panel the Perl code illustrated in Figure

13. The left-hand panel containing the flowchart will be empty until the flowchart will be rendered in

Step 6.

sub process_request {

 my $param = shift;

my $msg = diameter::Param::message($param) ;

die "Missing Diameter message" unless defined ($msg);

my $originHost = diameter::Message::getAvpValue($msg, "Origin-Host");

die "Missing Origin-Host" unless defined($originHost);

if (isBlacklisted ($originHost)) {

dca::action::drop();

} else {

dca::action::forward();

}

}

sub isBlacklisted {

my $originHost = shift;

my $blacklist = $dca::appConfig{"BlackList"};

my $i = 0;

while ($i <= $#{$blacklist}) {

return 1 if $blacklist->[$i]{"OriginHost"} eq $originHost;

DCA Programmer's Guide 19 of 96

$i++;

}

return 0;

}

Figure 13 "Blacklist" Perl Code

The Perl script (see Figure 13) makes use of the getAvpValue function to read the value of an AVP.

The getAvpValue function is part of the EDL API, which is described in section 10.1.2. It also uses

the drop and forward functions to discard and respectively forward the Diameter request. The drop

function is part of the basic routing API, which is described in section 10.4.

3.3.5.1 Where is the Perl script being executed?

First, let’s eliminate any possible confusion: even though the Perl script is edited via the NO GUI, the

Perl script is replicated to and eventually executed on the DA-MPs. There is no possibility to make

the Perl script process traffic other than running it on the DA-MPs.

3.3.5.2 How do the Event Handlers get invoked?

Let’s observe that the business logic of a DCA App consists of a collection of event handlers, which

are invoked when a Diameter message is delivered to the respective DCA App. A DCA App may

therefore define one event handler for Diameter requests and one event handler for Diameter answers.

Subsequent sections will introduce another category of event handlers, related to asynchronous

database queries, but let’s stick to the “Blacklist” DCA App for now. “Blacklist” defines only one

event handler: process_request. Unlike isBlacklisted, which is a standard Perl subroutine

invoked from process_request, process_request itself is not explicitly invoked from

anywhere in the Perl script. The event handlers are explicitly invoked by the Perl running

environment of the DCA framework. Their names are configured in the NO Main Menu→DCA

Framework→< Application Name>→General Options screen and by default these names are

process_request and process_answer. These names may be changed, but one needs to make

sure that the configured event handler names are consistent with the names used in the Perl script.

Also, the event handler names shall be left empty if there is no corresponding event handler defined in

the Perl script (see Figure 14).

Figure 14 Event Handler Subroutine Name Configuration

3.3.5.3 How does the DCA App configuration data get accessed?

The configuration data of a DCA App is accessible to the Perl script through the $dca::appConfig

variable, which is a complex variable representing a hash of arrays of hashes. One has to dereference

it with exactly the same table names and field names specified when the structure of the configuration

tables has been defined in step 3.3.3:

$dca::appConfig{“<table_name>”}->[<record_number>]{“<field_name>”}

20 of 96 DCA Programmer's Guide

in our case:

$dca::appConfig{“BlackList”}->[<record_number>]{“OriginHost”}

3.3.5.4 What is the „main part“ good for?

“Blacklist” has an empty “main part”. The “main part” of a Perl script is where the Perl interpreter

starts executing instructions. In DCA the main part is executed only once following the successfully

compilation of the script.

The “main part” is typically used to perform whatever initializations are necessary (like for instance

Custom MEAL objects, as we will describe later on).

Another task that fits into the “main part” is DCA App configuration data post-processing. We have

seen in section 3.3.5.3 that the “Blacklist” configuration data is accessible to the business logic (Perl

script) as an array. “Blacklist” simply loops through the array when looking for each Origin-Host, but

a more performance–aware version would certainly convert the array into a more performant data

structure, like for instance a hash table keyed by the Origin-Host values.

Other DCA apps may even need to use multiple keys (hence multiple hash tables) or compound keys;

the “main part” is the right place to perform this kind of structural optimizations on the DCA App

configuration data.

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax

After editing the script, while in the Development state, the following actions are possible (see Figure

15):

• Render Chart (to generate the flowchart from the Perl code);

• Render Code (to generate a Perl code skeleton from the flowchart);

• Save (to save the Perl code and the flowchart);

• Check Syntax (to check syntax of Perl script).

DCA Programmer's Guide 21 of 96

Figure 15 Development Environment Buttons

The "Render Chart" action generates a flowchart based on the Perl code. Note that the flowchart has a

Perl subroutine granularity and not a Perl instruction granularity. The flowchart's main purposes are:

(i) to describe how the callback subroutines are linked to the event handlers (Diameter message

handlers or other callback subroutines) that registers them and (ii) to indicate the terminating actions

(drop, forward or return answer).

The flowchart will not illustrate on which condition a Perl subroutine is invoked (i.e. if conditions) or

how many times a Perl subroutine is invoked (i.e. loop conditions). Also, the "Render Chart" action

shall be explicitly triggered by clicking the corresponding button after each modification of the Perl

script.

The approach pursued by this ("Blacklist") and subsequent DCA App examples in this document

("CountULR" and "Rate") is based on the idea that a DCA App programmer will first provision the

Perl code and then render the flowchart. The "Render Code" action allows a somewhat opposite

approach, by first drawing a flowchart and then generating a Perl script skeleton based on it.

The “Save” button allows the flowchart and Perl code to be saved, while the DCA App version is in

Development or Trial state.

The “Check Syntax” button becomes enabled once the "Save" action has been completed, while the

DCA App version is in Development or Trial state. It performs a syntax check on the Perl code and

displays the errors if the syntax check fails.

3.3.7 Step 7: Test the DCA App Version

Having the configuration data and business logic provisioned, it is now time to test the “Blacklist”

DCA App.

A DCA App version is tested by promoting it to the Trial state, which will automatically result in

running it on the dedicated Trial DA-MPs.

22 of 96 DCA Programmer's Guide

The first step is therefore to configure the Trial DA-MPs, which can be done from the “Trial MPs

Assignment” screen (see Figure 16 and section 9.2.4).

The Trial DA-MPs assignment is configured per DCA App, that is, it needs not be repeated for each

DCA App version.

Note also that our network contains only one DA-MP, which will be also a Trial DA-MP. However,

in a real life deployment there would typically be a few Trial DA-MPs and a number of non-Trial

DA-MPs.

Figure 16: Trial MP Assignment

Next, on the “Application Control” screen, promote the DCA App version from Development to Trial

state by selecting it and clicking on the “Make Trial” button.

While in Trial state the DCA App version can be: modified, saved, have the syntax checked and, in

addition to the Development state, it can also be compiled (by clicking the "Compile" button, see

Figure 15), as further described in chapter 4. During each new cycle starting with the first Perl code

modification and lasting until the next successful compilation (with an arbitrarily number of

modifications, save and syntax check actions taking place during this time), the Trial DA-MPs will

execute the previously successfully compiled Perl script of the respective DCA App version.

If successfully compiled, the “Blacklist” DCA App on the Trial DA-MP will switch into the

operational state Available (see the SO Main Menu: Diameter→Maintenance→Applications

screen). On the non-Trial DA-MPs the DCA App operational state will remain Unavailable because

there is no DCA App version in Production state at this moment.

3.3.8 Step 8: Promote the DCA App Version to Production State

A successfully compiled Trial DCA App version can be promoted to the Production state. For this

purpose, on the “Application Control” screen, the DCA App version shall be selected and the “Make

Production” button clicked.

At this stage the only DCA App version available so far is in Production state. All non-Trial DA-MPs

will start running it and on these DA-MPs the DCA App operational state will become Available.

Because there is no DCA App version in the Trial state, the Trial DA-MPs will run the Production

version as well.

Please note that our network is a very particular case that contains one single DA-MP, which is

configured as a Trial DA-MP. This means that the Production version will be executed on this only

DA-MP if and only if no Trial version exists. As soon as a (new) Development version will be

promoted to the Trial state, the Trial DA-MP will stop executing the Production version and will start

executing the (new) Trial version.

While in Production state, the business logic of the DCA App version cannot be changed anymore.

It’s only the configuration data that can be updated.

DCA Programmer's Guide 23 of 96

We have achieved our initial objective of running the “Blacklist” DCA App in our network. From this

point on a number of alternatives are possible:

• Demote the DCA App version from Production state back to Development to fix bugs, re- test

and promote back to Production state;

• Copy the DCA App version into a new version with the purpose to improve its business logic

(in terms of efficiency, functionality or both) and eventually promote the newer version to

Production state;

• Export the DCA App version from the current network and import it onto another network;

We are touching on the DCA App lifecycle management topic, which will be described in more detail

in the next chapter.

24 of 96 DCA Programmer's Guide

4 DCA Application Lifecycle

The DCA Application Lifecycle enables the DCA App programmer to manage the lifecycle of a DCA

App.

So far we have developed one single DCA App version, we tested it and promoted to the Production

state. The state transitions are illustrated in Figure 17.

Figure 17 Transitions from Development to Production State

In a real life deployment a DCA App may need to be continuously enhanced both in terms of

efficiency as well as features. A typical approach would be to “clone” the DCA App version currently

in Production state to a new version in Development state, work on the new version (while the old

version is processing the Diameter traffic), test the new version and eventually replace the older

version in Production state with the newer one. This process is illustrated by the transition path 7 → 3

→ 5b → 9 in Figure 18.

DCA Programmer's Guide 25 of 96

Figure 18 Creating a New DCA App Version

The DCA App Lifecycle management is done via the Main Menu: DCA Framework→<DCA App

Name>→Application Control screen.

Each DCA app version can be in one of the following states:

• Development (initial state)

– There are zero or more Development versions in the system.

– Development version is not executed on any MP.

– Configuration schema (databases), configuration data, flowchart may be updated.

– A new version in Development state is created in the system when:

o A “Create New Development” button is clicked, see 9.2.5. In this case, the version

will have an empty flowchart, empty configuration schema and empty

configuration data.

o Importing the business logic (w/ or w/o configuration data), see 0. In this case the

flowchart and the configuration schema (databases) will be copied from the

imported version. Optionally, configuration data may be imported along with the

business logic as well.

o Copying a new Development version from an existing version in the system, see 0.

In this case the business logic as well as the configuration data of the selected

version will be copied into the new version.

• Trial

– There are zero or one Trial versions in the system.

– Trial version is executed on the DA-MPs assigned to run the Trial version

– If no Trial version exists, then the Trial MPs will run the Production version (see Figure

19).

– Configuration schema (databases), configuration data, flowchart may be updated.

• Production

– There are zero or one Production version in the system.

– When no Production version exists in the system, the operational state of the DCA

application on MPs supposed to run the Production version will be set to

“unavailable”(Main Menu: Diameter→Maintenance→Applications). This may

happen if the Production version is rolled back to the Development state or deleted.

– Is executed:

o On all the DA-MPs, if no Trial version exists, or

o On all the DA-MPs except the DA-MPs assigned to run the Trial version, if a Trial

version exists (see Figure 19).

– Configuration schema (databases) & Flowchart are read-only.

– Configuration data may be updated.

• Archived

– There are zero or more Archived versions in the system.

26 of 96 DCA Programmer's Guide

– Archived versions are the application versions that have previously been in the

Production state. They serve as backups for the purpose of bringing the system back to a

previous known state with minimum service interruption.

– Archived version is not executed on any MP.

– Configuration schema (databases), Configuration Data and Flowchart are read-only, but

can be exported and copied into a new version.

Figure 19: Assignment of the Version to a DA-MP

The following transitions are possible for a given DCA App version:

• Development → Trial (only if syntax was successfully checked and no other version is in Trial

state)

• Trial → Production (only if the code/flow control chart was successfully compiled and no other

version is in Production state)

• Production → Archived (automatic transition when a new version is promoted to Production)

• Trial → Development

• Production → Development (the operational state of the DCA App becomes Unavailable)

• Archived → Development

• Archived → Trial

• Archived → Production

DCA Programmer's Guide 27 of 96

5 Developing Statefull DCA Apps

The “Blacklist” DCA App introduced in chapter 3 was a stateless Diameter application because it was

processing each Diameter message individually without maintaining any state between a Diameter

request and its corresponding answer (Diameter transaction state) or across Diameter transactions (e.g

Diameter session state) or across Diameter sessions (e.g. user state).

DCA Apps may however need to store state:

• Diameter transaction state – for instance collect some information from the Diameter request

and use that information when processing the Diameter answer.

This task can be addressed in two ways:

1. Using the Diameter transaction context variables API documented in section 10.2.2.

2. Developers familiar with the Internal Variables from the Mediation feature may use

Internal Variables for this purpose, as described in section 10.2.1. However, Internal

Variables involve a configuration overhead and therefore unless there is a strong

argument in favor of using them (e.g. they need to be set or read from Mediation

rules) the Diameter transaction context variables, being a purely programming

interface, are preferable

• Diameter session or user state – for instance collect information across multiple Diameter

transactions in the same session or user information across multiple Diameter sessions.

This task can be addressed using the Universal Session Binding Repository (UDR) and is

described in section 10.7.

28 of 96 DCA Programmer's Guide

6 A Statefull DCA App Using the UDR DB

In chapter 3 we have developed a stateless DCA App. Chapter 5 introduces the mechanisms available

in DCA to develop statefull DCA Apps.

This chapter describes the additional configuration steps that need to be performed and introduces the

API available to develop a statefull DCA App that uses the UDR (Unified Data Repository). The

UDR provides a generic interface to the DSR, which implements a scalable, distributed and persistent

database infrastructure, which DCA Apps as well as other Oracle applications may use.

6.1 The „CountULR“ DCA App

The “CountULR” DCA App maintains a per-user count of ULR messages and deletes it when a CLR

message from the respective user is received. The user is identified based on the content of the User-

Name AVP in the incoming Diameter requests.

6.2 Prerequisites

The DCA Framework must have been previously activated as described in [1]. Also, a DCA App with

the name “CountULR” shall be activated as described in [1].

The “CountULR” DCA App has to be enabled on all the DA-MPs in the network from the SO Main

Menu: Diameter→Maintenance→Applications.

An ART rule shall be added that enables ULR and CLR Diameter requests to be delivered to the

“CountULR” DCA App.

6.3 The Process

The following steps must be followed in order to provision the “CountULR” DCA App:

Business Logic and Configuration Data

Provisioning

UDR DB Configuration

Step 1: Configure the general options and behavior

of the "CountULR" DCA App

Step 2: Create a new development version of the

“CountULR” DCA App;

Step A: Configure UDR DBs (as required by the

DCA App business logic);

Step 3: Define the structure of tables to store the

“CountULR” configuration data;

Step 4: Provision the “CountULR” configuration

data;

Step 5: Provision the “CountULR” business logic –

essentially a Perl script;

Step 6: Render the Flow Control Chart based on the

Perl script. Save and perform syntax checks;

Step 7: Test the “CountULR” DCA App: configure the Trial DA-MPs and promote “CountULR” to Trial

state;

Step 8: Compile “CountULR”, promote “CountULR” to Production state;

Steps 1 to 8 are similar to those described in chapter 3.

DCA Programmer's Guide 29 of 96

Steps A and B are required in order to create UDR DB and allow the “CountULR” DCA App to

interact with it. UDR DB configuration is independent from the DCA App configuration, except that a

relative ordering must be followed:

• Step A may be executed in any order relative to steps 1 and 8.

6.3.1 Step 1: Configure the DCA App's Global Options and Behavior

In addition to the considerations discussed in section 3.3.1, for DCA Apps that use UDR, the

following configuration options may need to be adjusted:

• On the NO screen Main Menu: DCA Framework→<DCA App Name>→General Options

(see section 9.2.3):

❑ "Read-Only UDR Access as Guest", which may be used to control the access of the DCA

App to UDR DBs owned by other DCA Apps. This option is not relevant to "CountULR"

because "CountULR" will exclusively use the UDR DB owned by itself (see section Error! R

eference source not found.)

• It is recommended the state data size (consisting of the size of the lookup key and respectively

the size of the state data itself) of any new DCA App to be kept below the default values

configured on the NO Main Menu: DCA Framework→Configuration screen (see section

9.2.1). If, for good reasons, a DCA App requires a larger lookup key or more data to store, then

these limits shall be increased.

Note that these limits apply globally to all active DCA Apps. As a result, decreasing these value

may result in existing DCA Apps having their UDR queries rejected with a

dca::udr::ResultCode::MaxStateSize error, and is therefore not recommended.

6.3.2 Step 2: Create a New Development Version

See section 3.3.2.

6.3.3 Step A: Configure the UDR DBs

6.3.3.1 Configure UDR DB as Remote server

Note: Comagent Configuration with UDR DB will be NOAM Level Configuration.

6.3.3.1.1 ComAgent Configuration on DSR

For Comagent configuration go to Communication agent TAB on Active DSR NO GUI and

configure UDB DB Server IMI IP as remote server.

Note:

If DSR and UDR deployment are in same network use UDR IMI IP as Comagent Remote

Server Configuration.

If DSR and UDR deployment are in different network use UDR XSI IP as Comagent Remote

Server configuration.

For this, add new XSI Interface on both DSR and UDR side for Comagent Communication.

Make sure new added XSI interface are Desktop routable and accessible from both side.

Do not use DSR signaling Interface (XSI Interface) for comagent communication.

• Remote Server Configuration :

30 of 96 DCA Programmer's Guide

Configure UDR DB as Remote Server.

• Connection Group configuration :
Add previously configured Remote Server to STBDbSvc Connection Group.

Note: Restart the MPs Server to make the Comagent service /connection up

• Steps to Restart the MPs Server :

- Go to Active DSR NOAM status & Manage section, select the MP server and

restart the MP server with click on restart button.

Figure Remote Server Configuration on DSR NO Server

Figure Connection group Configuration on DSR NO Server

Figure Active NOAM Status and Manage screen

DCA Programmer's Guide 31 of 96

6.3.3.1.2 Comagent Configuration on UDR

For Comagent configuration go to Communication agent TAB on UDR NO GUI and configure all

the DSR MP IMI IP as client.

Note: Please refer section #ComAgent Configuration on DSR Note for configuring the Interface

IP as client.

• Remote Server Configuration :

Configure DSR MPs IMI IP as Client.

Note: Reboot the Active UDR NOAM Server to make the Comagent service /connection up.

• Steps to Restart the MPs Server :

- Go to Active UDR NOAM status & Manage section, select the Active NOAM

server and Reboot the Active NOAM server with click on reboot button.

6.3.3.1.3 Comagent Connection Status Validation

• Comagent Connection status check on DSR NO Server :

 For Connection, status check go to Communication agent Maintenance TAB on DSR NO

GUI.

32 of 96 DCA Programmer's Guide

• Routed Service status check on DSR NO Server :

 For routed service, status check go to Communication agent Maintenance TAB on DSR NO

GUI.

• HA Service status check on DSR NO Server :

 For HA Service status check go to Communication agent Maintenance TAB on DSR NO GUI.

• Comagent Connection status check on UDR NO Server :

 For Connection, status check go to Communication agent Maintenance TAB on UDR NO GUI.

Figure Comagent Connection status check on DSR NO Server

Figure Routed Service status on DSR NOAM Server

Figure HA Service Status Check on NOAM Server

DCA Programmer's Guide 33 of 96

• Routed Service status check on UDR NO Server :

 For routed service, status check go to Communication agent Maintenance TAB on UDR NO GUI.

• HA Service status check on UDR NO Server :

 For HA Service status check go to Communication agent Maintenance TAB on UDR NO GUI.

Figure Routed Service Status check on UDR NO Server

34 of 96 DCA Programmer's Guide

6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application

Login to Active NOAM Server through putty session and run this loader

(enableSecurityApp) with following steps:

• Go to this path “/usr/TKLC/udr/prod/maint/loaders/upgrade”

• Execute the “enableSecurityApp” script.

• Reboot the both UDR NOAM server.

6.3.3.3 Audit Time Configuration on Active UDR NOAM

By Default this configuration will disable (unchecked) e.g. no record will be clean up on

UDR server.

• if you want to clean old record on UDR ,we need to configure as

• “Cleanup Inactive Security App Subscriber Enabled” is checked (enable) and

“Security App SDO Audit Interval” is set value as “10” => all records will be

cleared after 10 sec.

Figure Routed Service status check on UDR NO Server

Figure Configuration of Audit Time on UDR

DCA Programmer's Guide 35 of 96

6.3.4 Step 3: Define the Configuration Data Schema

“CountULR” does not use any DCA App configuration data.

6.3.5 Step 4: Provision the Configuration Data

“CountULR” does not use any DCA App configuration data.

6.3.6 Step 5: Provision the DCA App Business Logic

The “CountULR” DCA App implements the following business logic:

• When receiving a ULR message, extract the user name from the User-Name AVP and check

if a state has been created for the respective user:

o If the user name is not found, create a state data.

o If the user name already exists, read the existing state.

• When receiving a CLR message, extract the user name from the User-Name AVP and delete

the state corresponding to the respective user, if it exists.

Error! Reference source not found. illustrates a typical call flow. “CountULR” uses two UDR API c

alls: createOrRead, BulkDelete . The UDR API is described in section 10.7.

Figure 20: “CountULR” Call Flow

The Perl code is illustrated in Error! Reference source not found..

use constant{

 # key types for our app – only NAI is currently used,

 # the others are for exemplification

 IMSI => 0,

 SESSION => 1,

 NAI => 2,

36 of 96 DCA Programmer's Guide

 IPv4 => 3,

 # command codes for S6 commands

 ULR_CMD => 316,

 CLR_CMD => 317,

};

this function is called when receiving a diameter request

message

sub process_request{

 # session state to be stored on the udr

 # the session state stores:

 # - no of requests for this user-name

 # - no of success replies for this user-name

 # - no of error replies for this user-name

 my $udr_state =

 {

 requests => 1 # only requests are currently counted

 #ok_replies => 0,

 #err_replies => 0

 };

 # diameter message is the first parameter

 my $param = shift;

 # only one key type for this app: NAI

 my $key_type = NAI;

 # get the diameter message object

 my $msg = diameter::Param::message($param);

 if(!defined($msg)){

 die "Bad diameter message parameter.";

 }

 # try to get the the diameter command code from the diameter message

 my $cmd = diameter::Message::commandCode($msg);

 if(!defined($cmd)){

 die "No command code in diameter message.";

 }

 # get User-Name from the message

 my $user = diameter::Message::getAvpValue($msg,"User-Name");

 if(!defined($user)){

 # could not create $user

 die "Could not get the User-Name value from the message"

 }

 my $xmlData = create_xml_State_data(%udr_state);

 if(ULR_CMD == $cmd){

 # process Update-Location-Request

 # Instantiate and send the "CreateOrRead" UDR stack event

 my $result = dca::udr::udrInstance("GLOBAL_UDR")->createOrRead(

 IMSI_KEY_TYPE,

 dca::udr::KeyDataType::STRING, $imsi,

 dca::udr::StateDataType::STRING, $xmlData,

 "createOrReadCb");

 # check the "synchronous" error

 if(!defined($result)){

 # could not create the udr request

 die "could not create the UDR request";

 }

 }

 elsif(CLR_CMD == $cmd){

 # process Cancel-Location-Request

 # instantiate and send the "Delete" UDR stack event

my $result = dca::udr::udrInstance("GLOBAL_UDR ")-> bulkDelete(IMSI_KEY_TYPE,
 \@userIds ,

 "deleteCb");

 # check the "synchronous" error

 if(!defined($result)){

 # could not create request

DCA Programmer's Guide 37 of 96

 die "could not create the UDR request";

 }

 }

 else{

 die "unknown diameter command received";

 }

}

this function is called when receiving a diameter answer

message

sub process_answer{

}

this function is called when receiving an DeleteStateResult

answer from the UDR

sub deleteCb{

 my $udr_code = dca::udr::result()->code();

 if(!defined($udr_code)){

 # could not get the result code of the UDR answer

 die "did not get the result code of UDR answer";

 }

 if(dca::udr::ResultCode:: SubscriberNotFound== $udr_code){
 die "could not find a record with the given key on the UDR";

 }

 elsif(dca::udr::ResultCode::Success != $udr_code){

 die "UDR error: $udr_code";

 }

}

this function is called when receiving an CreateOrReadStateResult

answer from the UDR

sub createOrReadCb

{

 my $udr_code = dca::udr::result()->code();

 my $udr_state = dca::udr::result()->data();

 # diameter message is the first parameter

 my $param = shift;

 # only one key type for this app: NAI

 my $key_type = NAI;

 # get the diameter message object

 my $msg = diameter::Param::message($param);

 if(!defined($msg)){

 die "Bad diameter message parameter.";

 }

 # get User-Name from the message

 my $user = diameter::Message::getAvpValue($msg,"User-Name");

 if(!defined($user)){

 # could not create $user

 die "Could not get the User-Name value from the message"

 }

 if(!defined($udr_code)){

 # Raise critical alarm ExecutionFailed with error details, Mark a

message as not vulnerable

 raise_alarm($cmType, REQUEST_MSG, dca::meal::Major,

&UDR_INVALID_RESULT,$transData->[IMSI]);

perform_error_action($cmType, UDR_QUERY_ERROR, $transData->[CMD_CODE]);

 }

 if(!defined($udr_state)){

38 of 96 DCA Programmer's Guide

 # could not get the udr state

 die "did not get the udr state in the UDR answer";

 }

 exec_nxt_CM_for_req_and_exit($msg, ++$priority, $transData);

}

Figure 21: “CountULR” Perl Code

6.3.6.1 What does a “state” consist of?

A state is essentially a mapping between a Key and a Value. What exactly the Key and Value are is

completely under the DCA App’s control. The UDR does not attach any semantics to a DCA App

state. In “CountULR” the Key is the user name extracted from the User-Name AVP and the Value is

basically a counter that counts the total number of ULR messages.

Even though “CountULR” uses a single Key (of type NAI), DCA Apps may, in general, use multiple

Keys (IMSI, MSISDN, IP addresses, Diameter Session-Id, etc.).

A DCA App may distinguish between the different Keys by declaring their Key Types. The Key Type

helps avoid collisions like for instance between NAI key “fred” and IPv4 address key 66.72.65.64, or

between IP source address key 1.2.3.4 and destination IP address key 1.2.3.4.

The Value associated to a Key is the value of a Perl variable. For “CountULR” the Value is a Perl

hash table containing one key “requests” that stores an integer representing the ULR counter. Perl

complex data structures like hash tables and arrays are converted to JSON and stored in the UDR DB

as strings. When retrieved from the UDR they are converted back to the original data structure. Scalar

Perl variables, on the other hand, need not undergo a JSON conversion.

6.3.6.2 What are Asynchronous API Calls and Callbacks?

The dca::udr::udrInstance(“GLOBAL_UDR”)→createOrRead,

dca::udr::udrInstance(“GLOBAL_UDR ”)→update and dca::udr::udrInstance(“GLOBAL_UDR

”)→bulkDelete API functions initiate, each of them, an UDR query. They are asynchronous

functions, in the sense that they do not wait until a response from the UDR is received. They construct

the UDR DB query and return immediately, to allow the other Diameter messages to be processed.

The query itself is sent after the event handler execution completes.

How can then the DCA App learn about the outcome of the UDR DB query it just sent? It may be

observed that all the UDR API functions can register, as the last parameter, the name of a callback

subroutine. The callback subroutine is invoked by the DCA framework when the outcome of the

corresponding UDR query is known. The outcome may be: (i) an error condition that prevented the

UDR query to even be sent, (ii) the UDR DB response itself or (iii) an error condition indicating that

no response has been received within a certain timeout interval.

6.3.6.3 How is the UDR state returned to the Perl script?

In the callback subroutine the DCA App programmer can use the dca::udr::result() class to

retrieve the error code and, if the query was successful, the result.

6.3.7 Step 6: Render the Flow Control Chart

Render the Flow Control Chart based on the Perl script. Save the code and check the syntax.

DCA Programmer's Guide 39 of 96

Figure 22: Flow Control Chart

6.3.8 Step 7: Test the DCA App Version

See 3.3.7.

6.3.9 Step 8: Promote the DCA App Version to Production

See 3.3.8.

40 of 96 DCA Programmer's Guide

7 Monitoring a DCA App

Custom MEAL general description – templates and their purpose

The monitoring of the execution of a DCA App is possible by means of the Custom MEAL feature.

The Custom MEAL feature enables a DCA App programmer to define and use measurements, KPIs

and events, on demand:

• Measurements are used to count specific events or amounts, as required by the DCA App’s

business logic. Their historical values measured during specific time intervals and/or on

specific hosts are available via reports;

• KPIs display real-time statistics of the measured events or amounts, like for instance average

values;

• Events may be triggered automatically when the currently measured values exceed the

configured thresholds.

Alternatively, events may be triggered explicitly from the DCA App code.

The Custom MEAL feature hides most of the complexity of the underlying DSR objects that

implement the measurements, KPIs and events by defining a number of four templates, which are

designed to implement specific tasks:

• The Counter template – is used to count events. The counter values are available only off-line

through the Measurement Reports;

• The Rate template – is most typically used to calculate message rates. It generates KPIs,

Measurement Reports and may be used to automatically raise alarms if the configured

threshold values are exceeded;

• The Basic template – is used to measure averages or number of elements in a set (e.g. to

calculate average size of AVPs, messages or number of users registering/deregistering). It

generates KPIs, Measurement Reports and may be used to automatically raise alarms if the

configured threshold values are exceeded;

• The Event template – is used to explicitly raise/clear alarms or generate events from the Perl

script when specific business logic conditions are detected.

Each of the templates is available in scalar and arrayed format.

We denote by "differentiation" the process of assigning a C-MEAL template instance to a DCA App.

We denote by "un-differentiation" the reverse process of removing a C-MEAL from a DCA App and

basically returning it to the pool of un-differentiated C-MEAL, from where it can be re-assigned to

another (or even the same) DCA App.

DCA Programmer's Guide 41 of 96

8 A DCA App Using Custom MEALs

Chapter 7 introduced the Custom MEAL (C-MEAL) templates and their applicability.

This chapter describes a simple DCA App that uses a Rate C-MEAL to monitor the rate of the

incoming Diameter requests with just two lines of Perl code.

8.1 The „Rate“ DCA App

The “Rate” DCA App differentiates a Rate C-MEAL, initializes it and pegs it every time a Diameter

request is received. The operator can monitor the incoming message rate in real time (KPI), check the

history of the measured value (measurement report) and get notified when the configured thresholds

are exceeded (alarm).

8.2 Prerequisites

The DCA Framework must have been previously activated as described in [1]. Also, a DCA App with

the name “Rate” shall be activated as described in [1].

The “Rate” DCA App has to be enabled on all the DA-MPs in the network from the SO Main Menu:

Diameter→Maintenance→Applications.

An ART rule shall be added that enables Diameter requests to be delivered to the “Rate” DCA App.

8.3 The Process

The following steps must be followed in order to provision the “Rate” DCA App:

Business Logic and Configuration Data

Provisioning

Custom MEAL Configuration

Step 1: Configure the general options and behavior

of the " Rate " DCA App

Step 2: Create a new development version of the

“Rate” DCA App;

Step 3: Define the structure of tables to store the

“Rate” configuration data;

Step 4: Provision the “Rate” configuration data;

Step 5: Provision the “Rate” business logic –

essentially a Perl script;

Step 6: Render the Flow Control Chart based on the

Perl script. Save and perform syntax checks;

Step I: Differentiate a scalar Rate C-MEAL

Step 7: Test the “Rate” DCA App: configure the Trial DA-MPs and promote “Rate” to Trial state;

Step 8: Compile “Rate”, promote “Rate” to Production state;

Steps 1 to 8 are similar to those described in chapter 3. Step I is required in order to assign a C-MEAL

to the “Rate” DCA App, which can be then be used via the C-MEAL API, which is described in

section 10.6.

Step I may be executed in any order relative to steps 1 to 5.

42 of 96 DCA Programmer's Guide

8.3.1 Step I: Differentiate a C-MEAL

C-MEALs are differentiated from the Main Menu→DCA Framework→Rate→Custom MEALs

screen, by clicking on the Insert button. For the “Rate” DCA App in particular, "TestRate", a scalar

rate C-MEAL, will be differentiated (see Figure 23). "TestRate" will raise an alarm when the

configured thresholds are exceeded. The threshold values represent percentages from the 100%

Threshold Value, which in our example is exactly 100.

Figure 23 TestRate Differentiation

8.3.2 Step 1: Configure the DCA App's General Options and Behavior

See section 3.3.1.

8.3.3 Step 2: Create a New Development Version

See section 3.3.2

8.3.4 Step 3: Define the Configuration Data Schema

“Rate” does not need any DCA App configuration data.

8.3.5 Step 4: Provision the Configuration Data

“Rate” does not need any DCA App configuration data.

8.3.6 Step 5: Provision the DCA App Business Logic

The “Rate” DCA App implements a simple business logic that consists of pegging the Rate C-MEAL

each time a Diameter request is received.

The Perl code is illustrated in Figure 24. Note that the C-MEAL name used to initialize the Perl object

must be the same as the one configured for the C-MEAL during differentiation (“TestRate”).

my $rateObject = new dca::meal::rate("TestRate");

die "Failed to bind to the rate template" unless $rateObject;

 # force compilation error if

DCA Programmer's Guide 43 of 96

 # rateObject initialization fails

my $eventObject = new dca::meal::event("TestEvent");

die "Failed to bind to the event template" unless $eventObject

sub process_request{

 $rateObject->peg(); # or `die unless $rateObject->peg();´ to force

 # a runtime error if pegging fails

}

And that's it! Alarms will be automatically raised when the configured

thresholds are exceeded

Alternative version to log an event when pegging fails - un-comment

eventObject initialization

sub process_request{

my $err = $rateObject->peg();

if (! $err){

if (! $eventObject->isThrottled(dca::meal::Minor)){

$err = $eventObject->log(dca::meal::Minor,

"Pegging failed");

}

}

}

Figure 24 The "Rate" DCA App Code

8.3.7 Step 6: Render the Flow Control Chart

The same process described in section 3.3.6 shall be followed.

8.3.8 Step 7: Test the DCA App Version

The same process described in 3.3.7 shall be followed.

At this stage, we can finally monitor the “Rate” DCA App in the following ways:

1. The “DCA:Rate” KPI group includes all the KPIs that belong to the “Rate” DCA App. In the

Main Menu→Status&Manage→KPIs the “DCA:Rate” group shall be included in the KPI

filter criteria (see Figure 25). As a result, the exponentially smoothened average of the ingress

rate (TestRate) is displayed in real time (see Figure 26).

The history of the measured values can be accessed from the Main

Menu→Measurements→Report screen. The “DCA:Rate” measurements group includes all

the measurements that belong to the “Rate” DCA App and shall be included in the filtering

criteria (see Figure 27). As a result, the history of the TestRate measurements is displayed

(see Figure 28).

An alarm with the corresponding severity is raised when the respective threshold values are exceeded.

This can be seen for instance in Figure 26. The alarm details can be accessed from Main

Menu→Alarms&Events.

2. Figure 29 illustrates the alarm history, obtained by progressively increasing the message rate

above the critical set threshold and then progressively reducing it below the minor clear

threshold.

44 of 96 DCA Programmer's Guide

Figure 25 Filter the DCA:Rate KPIs

Figure 26 Display TestRate KPI

DCA Programmer's Guide 45 of 96

Figure 27 Filter the DCA:Rate Measurements

Figure 28 Display the TestRate measurements

46 of 96 DCA Programmer's Guide

Figure 29 TestRate Alarm History

8.3.9 Step 8: Promote the DCA App Version to Production

The same process described in 3.3.8 shall be followed.

DCA Programmer's Guide 47 of 96

9 GUI Overview

9.1 NO/SO differences

Table 1: NO/SO GUI differences

NO SO

Framework Configuration Read-only

General Options Read-only

Custom MEALs Read-only

Trial MP Assignment Read-only

New application versions are created -

Existing application versions are copied -

Business Logic and/or NO Config data

imported/exported

SO Config data imported/exported

Flowchart and Script Development Read-only

Application version state transitions Read-only

Defining the configuration tables (schema) Read-only

Provisioning NO Configuration Data (table content) Provisioning SO Configuration Data (table content)

NO configuration read-only.

- System Options

9.2 NO Screens

The DCA Framework left hand menu on the NO includes the following screens:

• Configuration Screen

Each activated application is represented by the separate menu folder with the given application name.

The application folder on the NO includes the following screens (“Application Control” screen

contains the buttons that lead to other DCA screens):

• Custom Meals

• General Options Screen

• Trial MPs Assignment Screen

• Application Control Screen

❑ Create New Development Screen

❑ Copy to New Development Screen

❑ Import Pop-Up Window

❑ Export Pop-Up Window

❑ Development Environment

❑ Tables Screen

48 of 96 DCA Programmer's Guide

o Provision Tables Screen

Figure 30: NO Screens

9.2.1 Configuration Screen

The NO Main Menu→ DCA Framework→ Configuration screen allows configuring DCA

Framework parameters: “Maximum Size of Application State” and “Maximum Size of the Key”. See

Figure 31.

Figure 31: NO Configuration Screen

9.2.2 Custom MEALs

9.2.2.1 View Custom MEALs

The NO Main Menu: DCA Framework→<DCA App Name>→Custom MEALs screen

(illustrated in Figure 32) lists the Custom MEAL templates differentiated for the current DCA App. It

also enables new Custom MEAL templates to be differentiated and differentiated Custom MEAL

templates to be modified.

There are a limited number of Custom MEAL templates of each type for all the DCA Apps activated

in a network. An error will be displayed if the DCA App programmer attempts to exceed these limits.

It is not possible to modify the counter/basic/rate/event and scalar/arrayed type of a differentiated

Custom MEAL template. If the type needs to be modified, then a new Custom MEAL template shall

be created (provided the limits haven't been exceeded yet) and the old one shall be deleted.

DCA Programmer's Guide 49 of 96

Figure 32 The Custom MEAL View Screen

9.2.2.2 Configure the Counter Custom MEAL Template

Figure 33 illustrates the configuration options for inserting a Counter template.

Figure 33 The Counter Template Configuration Screen

9.2.2.3 Configure the Basic Custom MEAL Template

Figure 34 illustrates the configuration options for inserting a Basic template. The Basic template is

optionally associated with an alarm which will be automatically raised if the configured thresholds are

exceeded.

50 of 96 DCA Programmer's Guide

Figure 34 The Basic Template Configuration Screen

9.2.2.4 Configure the Rate Custom MEAL Template

Figure 35 illustrates the configuration options for inserting a Rate template. The Rate template is

optionally associated with an alarm which will be automatically raised if the configured thresholds are

exceeded.

DCA Programmer's Guide 51 of 96

Figure 35 The Rate Template Configuration Screen

9.2.2.5 Configure the Event Custom MEAL Template

Figure 36 illustrates the configuration options for inserting an Event template.

52 of 96 DCA Programmer's Guide

Figure 36 The Event Template Configuration Screen

9.2.3 General Options Screen

 The NO Main Menu→DCA Framework→ < Application Name>→ General Options screen

enables specifying the Perl Subroutines for Diameter Request and Answer, “Application State Data

TTL”, “Read Only UDR Access as Guest” and “Max. UDR Queries per Message”. See Figure 37.

Figure 37: NO General Options

DCA Programmer's Guide 53 of 96

9.2.4 Trial MPs Assignment Screen

The NO Main Menu→ DCA Framework→ <DCA App Name>→ Trial MPs Assignment screen

allows specifying which DA-MPs shall run the Trial version of the DCA App (see Figure 38). If there

is no Trial version available, the Trial DA-MPs will run the Production version, if there is any

available.

If a DCA App version is promoted to the Trial state but no Trial DA-MPs are currently configured

assigned, a warning message will be displayed.

Figure 38: NO Trial MPs Assignment

9.2.5 Application Control Screen

The NO Main Menu→DCA Framework→ < Application Name>→Application Control screen

(see Figure 39) allows:

• Listing all application versions configured in the system

• Inserting a new application version (via NO New Development Insert Screen)

• Copying and modifying an existing application version (via NO New Development Copy Screen)

• Exporting an application version entirely (business logic + provisioned data from the NO)

• Exporting only the NO provisioned data of an application version

• Importing a previously exported application version (business logic + NO provisioned data) (via

NO Import Pop-Up Window).

• Importing only the NO provisioned data to an existing application version (via NO Import Pop-

Up Window)

• Accessing the application version configuration tables (via NO Tables View Screen)

• Accessing business logic and flowchart of an application version (via NO Development

Environment Screen)

• Deleting an existing application version

• Changing the status of an application version (Development, Trial, Production, Archived)

54 of 96 DCA Programmer's Guide

Figure 39: NO Application Control

9.2.6 Create New Development Screen

The NO Main Menu→DCA Framework→<Application Name>→Application Control→ Create

New Development screen allows creating a new DCA App version with a given name and comments.

It is accessed by clicking “Create New Development” button on the “Application Control” screen,

see Figure 40.

Figure 40: NO Create New Development Screen

Currently, there might be up to 10 application versions at a time.

9.2.7 Copy to New Development Screen

The NO Main Menu-→ DCA Framework→< Application Name>→ Application Control→ Copy

to New Development screen allows copying an entire DCA App version, consisting of business logic

(Perl script, flowchart and configuration table schemas) and the NO provisioned configuration data,

into a new version. It is accessed by selecting the application version and clicking “Copy to New

Development” button on the “Application Control” screen, see Figure 41.

DCA Programmer's Guide 55 of 96

Figure 41: NO Copy to New Development

When the new Application Version is copied it will become visible on the Application Control screen

displaying the user provisioned name in the "Version Name" column and comments in the

"Comments" column.

The copied Application will also include the business logic (DB tables + Perl script) and the A level

(NO level) configuration data (if any was specified).

9.2.8 Export Pop-Up Window

The exported application version is stored in the form of a JSON file.

DCA Framework GUI offers three export options:

1. Export the business logic only (that includes the defined tables, flow control chart, the script,

custom Meals, KPIs, Events associated with the application version. It does not include the

provisioned data)

2. Export the business logic and the configuration data (in addition to the business logic the

provisioned data for the tables is also exported)

3. Export the configuration data only

For the first option, select the application version and click “Export Business Logic” (becomes

enabled when the row is selected).

For the second option, select the application version and click “Export Both” (becomes enabled

when the row is selected).

For the third option, select the application version and click “Export A Level Config Data”

(becomes enabled when the row is selected). The export popup window is illustrated in Figure 42.

56 of 96 DCA Programmer's Guide

Figure 42: NO Export

When the user tries to export the business logic, there is a validation to check whether the

flowchart/script has been compiled. If not, the export will be aborted and the error will be given.

The A level (NO level) configuration data can be exported from the NO machine, but not from the

SO.

9.2.9 Import Pop-Up Window

The NO Import Pop-Up window allows specifying a JSON file from which the business logic (if

required) and the NO provisioned data shall be imported.

Note: The provisioned data imported to the existing business logic shall be appended to the existing

data rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned

rows on the “Provision Table” screen and then import the new configuration data.

DCA Framework GUI offers three import options:

1. Import the business logic only (that includes the defined tables, flow control chart, the script,

custom Meals, KPIs, Events associated with the application version. It does not include the

provisioned data import, hence the defined tables are empty after the import)

2. Import the business logic and the configuration data (in addition to the business logic the

provisioned data for the tables is also imported)

3. Import the configuration data only

For the first option, click “Import Business Logic” (always enabled) on the NO “Application

Control” screen. Leave the checkbox “Import also Config data” unchecked, see Figure 43. Select the

file.

For the second option, click “Import Business Logic” (always enabled) on the NO “Application

Control” screen. Check the checkbox “Import also Config data”. Select the file.

For the third option, select the application version and click “Import A Level Config Data”

(becomes enabled when the row is selected), see Figure 44. Select the file.

Figure 43: NO Import Business Logic

DCA Programmer's Guide 57 of 96

Figure 44: NO Import Configuration Data

During the import, validations are performed particularly in order to ensure that the format of the

DCA App configuration data to be imported is compatible with that of the target DCA App version.

As a result, a number of fatal errors may occur during the import, which will force the import to be

aborted regardless of “Abort on first error” checkbox. Such fatal errors are:

• File larger than 25MB;

• File has wrong structure or missing data;

• All the errors that happen during the business logic import;

• If the user tries to import the config data to an existing application version, but none of the

table names from the imported file matches the table names of the selected application;

• If the user tries to import the config data to an existing application version, but none of the

field names in the tables from the imported file matches the field names in the tables of the

selected application;

• Level mismatch. A -level DCA Application configuration data can be imported only on the A

level. The same applies to the B level data.

Non-fatal errors, on the other hand, let the user decide whether to abort the import or not (depending

on the value of “Abort on first error” checkbox).

9.2.10 Development Environment

Development Environment is accessed by selecting the application version and clicking the

“Development Environment” button on the Application Control screen. The DCA Development

Environment (DCA-DE) is where a custom Diameter application developer can edit, save, check

syntax, and compile the application code for a Diameter Custom Application.

See [1] for more details.

9.2.11 Tables Screen

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Tables View screen (see Figure 45) allows

• Listing all the config tables (NO+SO) defined for an application version

• Inserting/editing a new config table (NO or SO) for the development or trial application

version (via NO Table Insert/Edit Screen).

• Deleting an existing config table (NO or SO) for the development or trial application version

58 of 96 DCA Programmer's Guide

• Viewing an existing config table of an archived or production application version (via NO

Table View Screen).

• Accessing the Provision Table View and Insert/Edit screens (via NO Provision Table View

Screen, NO Provision Table Insert Screen and NO Provision Table Edit Screen).

“Tables View” screen is accessed by selecting the application version and clicking the “Config

Tables and Data” button on the “Application Control” screen.

Figure 45: NO Tables View Screen

The “Insert”, “Edit” and “Delete” buttons are disabled on the “Tables View” screen for the archived

and production application versions.

The “View” button is enabled for the archived and production application versions if the table is

selected.

The “View” button is disabled for the development and trial application version.

The “Provision Table” button is always enabled if the NO table is selected (it is disabled for the SO

tables from the NO GUI).

Table 2 illustrates the access rights for the DCA App configuration schema and data provisioning tables.

The NO/SO DCA database tables (schema) can be created, deleted and modified from the NO GUI for

the development and trial application versions; they can be only viewed for the archived and production

application version. The NO DCA database tables can be provisioned anytime from the NO GUI. The

SO tables cannot be provisioned from the NO GUI.

Table 2: NO GUI tables and configuration data accessibility

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Table Insert screen (see Figure 46) allows defining a new

configuration table (NO or SO). It is accessed by clicking the “Insert” button on the “Tables View”

screen for the development and trial application versions.

 Archived Production Development, Trial

NO tables schema (level A) ro ro rw

NO tables content (level A) rw rw rw

SO tables schema (level A - shares same field as NO

tables schema)
ro ro rw

SO tables content (level B) n/a n/a n/a

ro: read-only

rw: read-write

n/a: not available

The accessibility of level A and level B table schema and content from the NO GUI:

NO GUI

DCA Programmer's Guide 59 of 96

Figure 46: NO Tables Insert Screen

Currently, there might be up to 10 configuration tables per application version (NO+SO).

The configuration table definition includes:

• Table Name and Description

• Number of table rows (single vs multiple up to 2000 rows)

• Table level (whether the table resides on the NO or the SO)

• Table Fields (up to 20 now)

❑ Field Name and Description

❑ Whether the field is unique

❑ Whether the field is mandatory

❑ Field Data Type

❑ Field Default value

The table fields can be of the following types (depending on the selected data type, ranges must be

also defined):

• Integer (Range: Min. and Max. values)

60 of 96 DCA Programmer's Guide

• Float (Range: Min. and Max. values)

• UTF8String (Range: Max. length)

• OctetString (Range: Max. length)

• IPaddress

• DiameterURI

• DiameterIdentity

• Enumerated (The values)

• Boolean

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Table Edit screen allows editing the schema of an existing DCA App

configuration table (NO or SO).

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Table View (Read-only Insert/Edit) screen allows viewing a DCA

App configuration table in read-only mode. It is accessed when the table is selected and the “View”

button is clicked on the NO “Tables View” screen for the archived and production application

version.

9.2.12 Provision Tables Screen

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Provision Table View screen (Figure 48) allows:

• Listing all the data rows provisioned for the NO configuration table

• Inserting a new data row to the NO configuration table (via NO Provision Table Insert

Screen)

• Editing a data row of the NO configuration table (via NO Provision Table Edit Screen)

• Deleting a data row from the NO configuration table

• Deleting all provisioned rows at once

It is accessed by selecting the table and clicking “Provision Table” button on the “Tables View”

screen, see Figure 47.

Figure 47: Provision Table button

The “Provision Table” button is disabled for the SO tables from the NO GUI, see Table 2.

DCA Programmer's Guide 61 of 96

Figure 48: NO Provision Table View Screen

Up to 2000 rows of data can be provisioned per table unless the table has only single row (the “Single

row” checkbox has been checked on the “Table Insert” screen).

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Provision Table Insert screen (see Figure 49) allows inserting a new

data row to the NO configuration table.

Figure 49: NO Provision Table Insert Screen

During the data insert, the GUI performs the following validations:

• Whether the mandatory value is present

• Whether the unique value is unique

• Whether the maximum of data rows is reached

• Whether the data inserted corresponds to the specified field data type

• Whether the data inserted is between the specified min-max range for the field

• Whether the entered sting value is no longer than the allowed maximum for the field

• Whether the entered enumerated value is within the allowed range of enumerated values for

the field

• Etc.

62 of 96 DCA Programmer's Guide

The NO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Provision Table Edit screen allows editing a data row of the NO

configuration table.

9.3 SO Screens

The DCA Framework left hand menu on the SO includes the following screens:

• Configuration Screen (NO screen, read-only on the SO)

Each activated application is represented by the separate menu folder with the given application name.

The application folder on the NO includes the following screens (“Application Control” screen

contains the buttons that lead to other DCA screens):

• Custom Meals (NO screen, read-only on the SO)

• General Options Screen (NO screen, read-only on the SO)

• Trial MPs Assignment Screen (NO screen, read-only on the SO)

• Application Control Screen

❑ Import Pop-Up Window

❑ Export Pop-Up Window

❑ Development Environment (NO screen, read-only on the SO)

❑ Tables Screen (NO screen, read-only on the SO, except for “View” and “Provision Table”

button)

o Provision Tables Screen

• System Options Screen

Figure 50: SO Screens

9.3.1 Application Control Screen

The SO Main Menu→ DCA Framework→ < Application Name>→ Application Control screen

(see Figure 51) allows:

• Listing all application versions configured in the system

• Exporting only the SO provisioned data of an application version (via SO Export Pop-Up

Window)

• Importing only the SO provisioned data to an existing application version (via SO Import

Pop-Up Window).

• Accessing the application version configuration tables (via SO Tables View Screen)

DCA Programmer's Guide 63 of 96

• Accessing the flowchart and business logic of an application version (via development

environment ,read-only)

Figure 51: SO Application Control Screen

9.3.2 Export Pop-Up Window

The B level (SO level) configuration data can be exported from the SO machine, but not from the NO.

To export the configuration data to a JSON file, select the application version and click “Export B

Level Config Data” (becomes enabled when the row is selected).

9.3.3 Import Pop-Up Window

The SO Import Pop-Up window allows specifying a JSON file from which the SO provisioned data

shall be imported.

Note: The provisioned data imported to the existing business logic shall be appended to the existing

data rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned

rows on the “Provision Table” screen and then import the new configuration data.

The B level (SO level) configuration data can be imported only to the SO machine.

To import the configuration data from the JSON file, select the application version and click “Import

B Level Config Data” (becomes enabled when the row is selected). Select the file.

9.3.4 Tables Screen

The SO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Tables View screen (see Figure 52) allows:

• Listing all the config tables (NO+SO) defined for an application version

• Viewing an existing config table (via NO/SO Table View Screen)

• Accessing the Provision Table View and Insert/Edit screens (via SO Provision Table View

Screen, SO Provision Table Insert Screen and SO Provision Table Edit Screen).

64 of 96 DCA Programmer's Guide

The SO “Tables View” screen is accessed by selecting the application version and clicking “Config

Data” button on the SO “Application Control” screen.

Figure 52: SO Tables View Screen (empty)

The “Insert”, “Edit” and “Delete” buttons are disabled on the SO “Tables View” screen.

The “View” button is enabled if the table is selected.

The “Provision Table” button is always enabled if the NO/SO table is selected.

Table 3 illustrates the access rights for the DCA App configuration schema and data provisioning tables

on the SO. The NO/SO DCA App table schemas can only be viewed. The level A DCA App

configuration tables content can only be view from the SO GUI. The level B DCA App configuration

tables can be provisioned.

Table 3: SO GUI tables and Configuration data accessibility

The SO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Table View (Read-only Insert/Edit) screen allows viewing a

configuration table in read-only mode. It is accessed when the table is selected and the “View” button

is clicked on the SO “Tables View” screen.

9.3.5 Provision Tables Screen

The SO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Provision Table, View screen allows:

• Listing all the data rows provisioned for the SO-rooted DCA App configuration table

 Archived Production Development, Trial

NO tables schema (level A)

ro

(replicated)

ro

(replicated)

ro

(replicated)

NO tables content (level A)

ro

(replicated)

ro

(replicated)

ro

(replicated)

SO tables schema (level A - shares same field

as NO tables schema)

ro

(replicated)

ro

(replicated)

ro

(replicated)

SO tables content (level B) rw rw rw

ro: read-only

rw: read-write

n/a: not available

SO GUI

The accessibility of level A and level B table schema and content from the SO GUI:

DCA Programmer's Guide 65 of 96

• Inserting a new data row to the SO-rooted DCA App configuration table (via SO Provision

Table Insert Screen)

• Editing a data row of the SO-rooted DCA App configuration table (via SO Provision table

Edit Screen)

• Deleting a data row from the SO-rooted DCA App configuration table.

• Deleting all provisioned rows at once

Note: The NO-rooted DCA App configuration tables, as well as the schema definitions of both the

NO-rooted and SO-rooted DCA App configuration tables are accessible on the SO only in read-only

mode.

The SO “Provision Table View” screen is accessed by selecting the table and clicking “Provision

Table” on the SO “Tables View” screen.

The SO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Provision Table, Insert screen allows inserting a new data row to the

SO-rooted DCA App configuration table.

The SO Main Menu→ DCA Framework→ < Application Name>→ Application

Control→<Version Name>→ Provision Table, Edit screen allows editing a data row of the SO-

rooted DCA App configuration table.

9.4 System Options

“System Options” screen is present on the SO only. See Figure 53- Figure 57.

“System Options” screen enables the configuration of the DSR application parameters that are:

• Relevant to the operational status “unavailable”. These options allow to specify the behavior

in case when the application state is “unavailable” (Main Menu:

Diameter→Maintenance→Applications). The possible behavior is:

o Continue Routing

o Use default route + specify application unavailable route list

o Send Answer with Result-Code AVP + specify Result-Code and Error Message

o Send Answer with Experimental-Result AVO + specify Result-Code, Error Message

and Vendor-Id.

Figure 53: System Options for the "Unavailable" Operation Status

• Relevant to the case when the DRL resources are exhausted. The behavior is to send an error

message with the specified Result-Code, Error Message and Vendor-Id.

66 of 96 DCA Programmer's Guide

Figure 54: System Options for the Exhausted DRL Resources

• Relevant to the run-time error. These options allow to specify the behavior in case of a run-

time error. Runtime errors fall into two categories:

o Perl specific runtime errors – e.g. division by zero, a “die” statement, calling an

undefined (utility, not event handler) subroutine etc.,

o Runtime errors triggered by the DCA framework – e.g. invoking an event handler that

does not exist or exceeding the maximum configured number of executed opcodes.

The possible behavior is:

o Continue Routing

o Discard

o Send Answer with Result-Code AVP + specify Result-Code and Error Message

o Send Answer with Experimental-Result AVO + specify Result-Code, Error Message

and Vendor-Id.

Figure 55: System Options for the Run-Time Error

• Realm and FQDN that are placed in Answer message generated by the DCA. These are the

values that will be placed in the Origin-Realm and Origin-Host AVPs of the Answer message

generated by DCA. If they are not configured, local node Realm and FQDN for the egress

connection will be used.

Figure 56: System Options for the Realm and FQDN

• Application invocation. This option is needed to indicate if the subsequent invocation of

application on a different node in the network is allowed or not.

If unchecked, the DSR-Application-Invoked AVP will be inserted, preventing the same DSR

application on another DSR node from receiving the Diameter message.

DCA Programmer's Guide 67 of 96

Figure 57: System Options for the Application Invocation

68 of 96 DCA Programmer's Guide

10 APIs

This chapter documents the various APIs available to a DCA App programmer.

10.1 The EDL API

10.1.1 API to Manipulate the Diameter Header

Purpose: Retrieve the Diameter message object needed for subsequent operations on the Diameter

message header and body

Prototype:

my $msg = diameter::Param::message($param);

where $param is a default parameter provided by all the event handlers and may be retrieved with

my $param = shift;

Purpose: Read the Diameter version number in the Diameter header

Prototype:

my $ver = diameter::Message::version($msg);

where $ver is undef in case of failure (e.g. wrong object passed in $msg) or the Diameter version

number if success

Purpose: Set the Diameter version number in the Diameter header

Prototype:

$err = diameter::Message::setVersion($msg, $ver);

where $err is undef in case of failure (e.g. wrong object passed in $msg) or a non-zero value in case

of success

Purpose: Return the length (as number of bytes) of the Diameter message

Prototype:

my $len = diameter::Message::messageLength($msg);

where $len is undef in case of failure (e.g. wrong object passed in $msg) or the length of the

Diameter message if success

Purpose: Read the Command Flags of the Diameter message.

Prototype:

my $cmdFlags = diameter::Message::commandFlags($msg);

where $cmdFlags is undef in case of failure (e.g. wrong object passed in $msg) or the Command

Flags if success.

Purpose: Read the Request flag of the Diameter message.

DCA Programmer's Guide 69 of 96

Prototype:

my $r = diameter::Message::isRequest($msg);

where $r is 1 if the Request flag is set, 0 if the Request flag is not set or undef if error (e.g wrong

object passed in $msg).

Purpose: Read the Diameter Proxiable flag in the Diameter header.

Prototype:

my $p = diameter::Message::isProxiable($msg);

where $p is 1 if the Proxiable flag is set, 0 if the Proxiable flag is not set or undef if error (e.g wrong

object passed in $msg).

Purpose: Set (set to 1) the Diameter Proxiable flag in the Diameter header.

Prototype:

$err = diameter::Message::setProxiable($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Proxiable flag in the Diameter header.

Prototype:

$err = diameter::Message::clearProxiable($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter Error flag in the Diameter header.

Prototype:

my $e = diameter::Message::isError($msg)

where $e is 1 if the Error flag is set, 0 if the Error flag is not set or undef if error (e.g wrong object

passed in $msg).

Purpose: Set (set to 1) the Diameter Error flag in the Diameter header.

Prototype:

$err = diameter::Message::setError($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Error flag in the Diameter header.

Prototype:

$err = diameter::Message::clearError($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

70 of 96 DCA Programmer's Guide

Purpose: Read the Diameter Retransmission flag in the Diameter header.

Prototype:

my $t = diameter::Message::isRetransmission($msg);

where $t is 1 if the Retransmission flag is set, 0 if the Retransmission flag is not set or undef if error

(e.g wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter Retransmission flag in the Diameter header.

Prototype:

$err = diameter::Message::setRetransmission($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Retransmission flag in the Diameter header.

Prototype:

$err = diameter::Message::clearRetransmission($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter 4
th
 reserved bit of the Command Flags in the Diameter header.

Prototype:

my $r4 = diameter::Message::isReservedBit4($msg);

where $t is 1 if the 4
th
 bit in the Command Flags flag is set, 0 if the bit is not set or undef if error (e.g

wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter 4
th
 reserved bit of the Command Flags in the Diameter header.

Prototype:

$err = diameter::Message::setReservedBit4($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter 4
th
 reserved bit of the Command Flags in the Diameter header.

Prototype:

$err = diameter::Message::clearReservedBit4($msg);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read/Set/Clear the Diameter 5
th
, 6

th
 and 7

th
 reserved bit in the Command Flags in the

Diameter header.

Prototype:

DCA Programmer's Guide 71 of 96

See three examples above where the “Bit4” suffix in the function names is accordingly

replaced by “Bit5”, “Bit6” and respectively “Bit7”.

Purpose: Read the Diameter Command Code in the Diameter header

Prototype:

my $cmd = diameter::Message::commandCode($msg);

where $cmd is undef if error (e.g wrong object passed in $msg) or contains the Command Code if

success.

Purpose: Set the Diameter Command Code in the Diameter header

Prototype:

$err = diameter::Message::setCommandCode($msg, $cmd);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter Application-ID in the Diameter header

Prototype:

my $appId = diameter::Message::applicationId($msg);

where $appId is undef if error (e.g wrong object passed in $msg) or contains the Application-ID if

success

Purpose: Set the Diameter Application-ID in the Diameter header

Prototype:

$err = diameter::Message::setApplicationId($msg, $appId);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success

Purpose: Read the Diameter Hop-by-Hop Identifier in the Diameter header

Prototype:

my $hbh = diameter::Message::hopByHopId($msg);

where $hbh is undef if error (e.g wrong object passed in $msg) or contains the Hop-by-Hop Identifier

if success

Purpose: Set the Diameter Hop-by-Hop Identifier in the Diameter header

Prototype:

$err = diameter::Message::setHopByHopId($msg, $hbh);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success

Purpose: Read the Diameter End-to-End Identifier in the Diameter header

72 of 96 DCA Programmer's Guide

Prototype:

my $err = diameter::Message::endToEndId($msg);

where $err is undef if error (e.g wrong object passed in $msg) or contains the End-to-End Identifier

if success

Purpose: Set the Diameter End-to-End Identifier in the Diameter header

Prototype:

$err = diameter::Message::setEndToEndId($msg, $e2e);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success

10.1.2 API to Manipulate the Diameter AVPs

Purpose: Read from a Diameter message the value of an AVP identified by name and instance

number

Prototype:

my $val = diameter::Message::getAvpValue($msg, $avp_name [,

$instance]);

The return values shall be:

• undef if $instance is 0,

• undef if there are less instances of the AVPin the Diameter message than the

$instance value or an AVP with the specified name does not exist in the Diameter

message or the AVP name is not specified in the AVP Dictionary,

• The value of the $instance-th instance of the AVP (starting from 1),

• The value of the first instance of the AVP if $instance has been omitted,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Purpose: Add at the end of the Diameter message an AVP identified by name and value

Prototype:

my $err = diameter::Message::addAvpValue($msg, $avp_name, $avp_val);

The return code shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name exists in the AVP Dictionary,

• undef if the AVP value cannot be converted to the AVP data type specified in the AVP

Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Purpose: Set the value of an AVP in a Diameter message

Prototype:

DCA Programmer's Guide 73 of 96

my $err = diameter::Message::setAvpValue($msg, $avp_name, $avp_val

[, $instance]);

If $instance has been omitted, the first instance of the AVP will be set. The return code shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name exists in the AVP Dictionary,

• undef if the AVP name is valid but no such AVP exists in the Diameter message,

• undef if $instance is 0,

• undef if the AVP exists in the Diameter message but $instance value is greater than

the number of AVP instances in the Diameter message,

• undef if the AVP value cannot be converted to the AVP data type specified in the AVP

Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Purpose: Set the value of an existing AVP in a Diameter message or add that AVP at the end of the

Diameter message if the message already contains exactly $instance – 1 AVPs:

Prototype:

my $err = diameter::Message::setAddAvpValue($msg, $avp_name,

$avp_val [, $instance]);

If $instance has been omitted, it defaults to 1. The return code shall be:

• 1 in case an AVP with the specified instance number exists and its value has been

successfully set,

• 2 if the Diameter messages contains exactly $instance – 1 AVPs of the specified type,

in which case the $instance’s AVP will be added to the end of the message,

• undef if the Diameter messages contains strictly less than $instance – 1 AVPs of the

specified type,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name exists in the AVP Dictionary,

• undef if the AVP name is valid but the Diameter messages already contains $instance

or more AVPs of the specified type,

• undef if $instance is 0,

• undef if the AVP value cannot be converted to the AVP data type specified in the AVP

Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Purpose: Read the value of an AVP’s flag octet

Prototype:

my $flags = diameter::Message::getAvpFlags($msg, $avp_name [,

$instance]);

The return value shall be:

• The value of flags octet of the $instance-th instance of the AVP (starting from 1),

• The value of the first instance of the AVP if $instance has been omitted,

• undef if there are less instances of the AVP in the Diameter message than the

$instance value

74 of 96 DCA Programmer's Guide

• undef if $instance is 0

• undef if an AVP with the specified name does not exist in the Diameter message

• undef if the AVP name is not specified in the AVP Dictionary

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Purpose: Set the value of an AVP’s flag octet

Prototype:

my $err = diameter::Message::setAvpFlags($msg, $avp_name, $mask [,

$instance]);

A 1 bit in $mask indicates a bit to set, while a 0 bit in $mask preserves the original bit value.

If $instance has been omitted, the flags of the first instance of the AVP will be set. The return code

shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name is valid but no such AVP exists in the Diameter message,

• undef if the AVP exists in the Diameter message but $instance value is greater than

the number of AVP instances in the Diameter message,

• undef if $instance is 0,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Note: The “V” bit preserves the original value regardless the $mask value.

Purpose: Clear specific bits in an AVP’s flag

Prototype:

my $err = diameter::Message::clearAvpFlags($msg, $avp_name, $mask [,

$instance]);

A 1 bit in $mask indicates a bit to clear, while a 0 bit in $mask preserves the original bit value.

If $instance has been omitted, the flags first instance of the AVP will be cleared. The return code

shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name is valid but no such AVP exists in the Diameter message,

• undef if the AVP exists in the Diameter message but $instance value is greater than

the number of AVP instances in the Diameter message,

• undef if $instance is 0,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Note: The “V” bit preserves the original value regardless the $mask value.

Purpose: Delete an AVP identified by name, from a Diameter message

Prototype:

my $err = diameter::Message::delAvp($msg, $avp_name [, $instance]);

DCA Programmer's Guide 75 of 96

If $instance has been omitted, the first instance of the AVP will be deleted. The return code shall

be:

• 1 in case AVP is deleted,

• 0 if AVP does not exist in message,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP exists in the Diameter message but $instance value is greater than

the number of AVP instances in the Diameter message,

• undef if $instance is 0,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Purpose: Delete all the instances of an AVP from a Diameter message

Prototype:

my $err = diameter::Message::delAvpAll($msg, $avp_name);

The return code shall be:

• 1 in case AVP is deleted,

• 0 if AVP does not exist in message,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Note: The AVPs on the same nesting level are deleted, i.e. the un-grouped AVPs in a Diameter

message, if the function is called with a Diameter message parameter or the AVPs in a specific

grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a

Grouped AVP parameter.

Purpose: Return the number of instances of an AVP from a Diameter message

Prototype:

my $cnt = diameter::Message::countAvp($msg, $avp_name);

The return value shall be:

• 0 if the AVP does not exist in the Diameter message,

• A strictly positive number indicating the number of occurrences of the respective AVP in

the Diameter message,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Note: The AVPs on the same nesting level are counted, i.e. the un-grouped AVPs in a Diameter

message, if the function is called with a Diameter message parameter or the AVPs in a specific

grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a

Grouped AVP parameter.

Purpose: Check whether a specific AVP (instance) exists in a Diameter message

Prototype:

my $exists = diameter::Message::avpExists($msg, $avp_name [,

$instance]);

76 of 96 DCA Programmer's Guide

The return value shall be:

• True if $instance is omitted and at least one AVP with the specified name exists,

• True if $instance is specified and an AVP with the specified name and instance

number exists,

• False if no AVP with the specified name exists in the Diameter message,

• False if $instance is specified, at least one AVP with the specified name exists, but the

number of instances of the respective AVP is strictly less than the specified $instance,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

Note: The AVPs on the same nesting level are checked, i.e. the un-grouped AVPs in a Diameter

message, if the function is called with a Diameter message parameter or the AVPs in a specific

grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a

Grouped AVP parameter.

Purpose: Return the length of the payload of an AVP from a Diameter message

Prototype:

my $len = diameter::Message::avpDataLength($msg, $avp_name [,

$instance]);

If $instance has been omitted, the length of the first instance of the AVP will be returned. The

return value shall be:

• undef if no AVP with that name exists in the Diameter message,

• undef if $instance is specified but less than $instance AVPs exists in the Diameter

message,

• A strictly positive number or 0, indicating the length of the payload of the indicated AVP

instance.

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object

or the other parameters (if any) are undef.

10.1.3 API to Manipulate the Diameter Grouped AVPs

All the API functions introduced in the previous section, work on grouped AVPs as well. For

instance, the value of the Subscription-Id grouped AVP may be read with:

my $gVal = diameter::Message::getAvpValue($msg, “Subscription-Id”);

and the Subscription-Id grouped AVP may be added to a Diameter message with:

my $err = diameter::Message::addAvpValue($msg, “Subscription-Id”,

$gVal);

It shall be noted, however, that in this case $gVal is an OctetString that contains both the

“Subscription-Id-Type” and the “Subscription-Id-Data” AVPs.

This approach is particularly handy when the “Subscriber-Id” grouped AVP needs to be copied from

one Diameter message to another, without having to look into the individual AVPs included in it.

However, if accessing the individual AVPs included into a grouped AVP is desired, then the

getGroupedAvp and addGroupedAvp API calls provide the necessary support:

DCA Programmer's Guide 77 of 96

Purpose: Access a Grouped AVP in a Diameter message

Prototype:

my $gAvp = diameter::Message::getGroupedAvp($msg, $avp_name [,

$instance]);

The return value shall be:

• undef if the AVP name does not exist in the AVP dictionary,

• undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP,

• undef if the AVP name is valid but the Diameter message does not contain a Grouped

AVP with that name,

• undef if the AVP name is valid but the Diameter message contains less Grouped AVPs

with that name than specified in $instance,

• A diameter::GroupedAvp Grouped AVP object that corresponds to the respective

instance of the Grouped AVP (or to the first instance if $instance is omitted).

The $gAvp diameter::Grouped AVP object can be used to manipulate the AVPs that it contains

using any of the API functions introduced so far:

$result = diameter::GroupedAvp::<API_function>($gAVP,

<API_function_params>);

where the $gAVP object of type diameter::GroupedAvp replaces the $msg object of type

$diameter::Message and $result represents the return parameter of the respective API function..

Note: getGroupedAvp works recursively to get a grouped AVP ($nested_gAVP) contained in

another grouped AVP ($gAvp):

my $nested_gAvp = diameter::Message::getGroupedAvp($gAvp,

$avp_name);

where $gAvp is a dimeter::GroupedAvp object

Purpose: Add a Grouped AVP to the end of a Diameter message

Prototype:

my $gAvp = diameter::Message::addGroupedAvp($msg, $avp_name);

where $gAvp is a diameter::GroupedAvp object.

The return value shall be:

• undef if the AVP name does not exist in the AVP dictionary,

• undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP.

A diameter::GroupedAvp Grouped AVP object can be further used to manipulate the AVPs that it

contains:

my $subscription_id = diameter::Message::addGroupedAvp($msg,

“Subscription-Id”);

diameter:GroupedAvp::addAvpValue($subscription_id, “Subscription-Id-

Type”, $avp_val);

diameter::GroupedAvp::addAvpValue($subscription_id, “Subscription-

Id-Data”, $avp_val);

Note: addGroupedAvp works recursively to add a grouped AVP ($nested_gAVP) within another

grouped AVP ($gAvp):

78 of 96 DCA Programmer's Guide

my $nested_gAvp = diameter::Message::addGroupedAvp($gAvp,

$avp_name);

where $gAvp is a diameter::GroupedAvp object

10.2 Diameter Transaction Stateful APIs

10.2.1 Internal Variables

This API is primary intended to enable a DCA App to interact with Mediation Rules through Internal

Variables. Internal Variables have been introduced by the Mediation feature and can be configured

from Main Menu: Diameter → Mediation → Internal Variables. Internal Variables are persistent

throughout the lifetime of a Diameter transaction.

Purpose: Access Internal Variables

Prototype:

my $iv_ref = new diameter::InternalVarDef(“<IV_Name>”);

my $internalVarMap = diameter::Param::internalVarMap($param);

where $param is the opaque parameter passed to every event handler and <IV_Name> is the name

assigned to the Internal Variable in Main Menu: Diameter → Mediation → Internal Variables.

Note: The Internal Variables are configurable at the B level, therefore the <IV_Name> must be

configured on all the sites. Otherwise, the initialization will fail when invoked on those DA-MP

located in sites where <IV_Name> does not exist.

Purpose: Set and Get Internal Variables

Prototype:

diameter::InternalVarMap::set($internalVarMap, $iv_ref, $val);

$val = diameter::InternalVarMap::get($internalVarMap, $iv_ref);

Enables setting values to and retrieving values from an internal variable, where $iv_ref and

$internalVarMap are initialized as shown before.

10.2.2 Diameter Transaction Context Variables

The Diameter transaction context variables offer Diameter transaction persistent storage, similar to

Internal Variables. Unlike Internal Variables, Diameter transaction context variables are not

configurable via the GUI (which provides for a much simpler API) and cannot be shared with other

features.

Purpose: Store Diameter transaction context variables

Prototype:

$err = dca::transctx::store(“<var_id>”, $var)

The function shall return undef if $var is undef or any error occurs (e.g. $var is a Perl hash or array

that cannot be successfully encoded into JSON or DSR cannot allocate more memory space for the

DCA Programmer's Guide 79 of 96

Diameter context variable) and 1 if the operation is successful.

Purpose: Retrieve Diameter transaction context variables

Prototype:

$var = dca::transctx::fetch(“<var_id>”);

undef will be returned in case of failure (e.g. <var_id> is not found because no variable with that

name has been previously stored).

10.3 Read DCA App Configuration Data

This API enables a DCA App to access its configuration data which was specified and provisioned as

described in sections 3.3.3 and 3.3.4.

When the Perl script is generated, the DCA App configuration data is converted into a Perl variable.

The Perl variable name is %dca::appConfig and is a hash (one key for each table) of arrays (one

index for each record) of hashes (one key for each field in the table).

Read-only access on the DCA App configuration data is enforced using the Const::Fast CPAN

module and applies to the data included in the %dca::appConfig definition (which is automatically

generated from the DCA App configuration data).

Note that there are semantical differences from one Const::Fast version to another, which affect the

way %dca::appConfig can be subsequently manipulated in the Perl script with regard to adding new

records to %dca::appConfig or accessing records that are not defined in %dca::appConfig.

For instance, in version 0.006, which is the one currently used, an attempt to read or assign a value to

an inexistent table (outermost hash key) %dca::appConfig will result in a runtime error.

On the other hand, assigning values to inexistent indexes (table records) and/or inexistent fields

(innermost hash key) will succeed and can be subsequently successful read, while reading from

inexistent indexes and/or inexistent fields will return undef. These indexes and fields will not be

written back to the DCA App configuration data.

Purpose: Read the DCA App configuration data

Prototype:

$dca::appConfig{“<config_table_name>”}[<row_index>]{“<field_name>”}

for non-“single row” configuration tables,

$dca::appConfig{“<config_table_name>”}{“<field_name>”}

for “single row” configuration tables.

Example: Assuming a DCA App defines a configuration table called ”MyTable” with two fields

“FieldA” and “FieldB” and provisions a few rows, it shall be possible to retrieve the NOAM and

SOAM provisioned data from the DCA app in the following way:

for $i (0 .. $#dca::appConfig{“MyTable”}) {

 dca::application::logInfo($dca::appConfig{“MyTable”}[$i]{“Field1”});

 dca::application::logInfo($dca::appConfig{“MyTable”}[$i]{“Field2”});

}

80 of 96 DCA Programmer's Guide

10.4 Routing API

The routing API enables a DCA App to perform some basic routing functions.

The dca::action::forward(), dca::action::answer($ans) and dca::action::drop() API

functions terminate the execution of the event handler. This means that the statements that follow

them in the Perl code are not executed. This also has a side effect on the UDR queries initiated before

invoking any of dca::action::forward(), dca::action::answer($ans) and

dca::action::drop() because, as mentioned in Error! Reference source not found., the UDR q

ueries are actually sent after the execution of the event handler completes: the side effect is therefore

that the UDR queries will be also not executed (i.e. sent to the UDR).

Besides dca::action::forward(), dca::action::answer($ans) and dca::action::drop(), an

event handler’s execution flow also terminates (as any other Perl subroutine) when a return

statement is encountered or when the enclosing curly bracket is reached. In this case the implicit

routing decision that the DCA framework takes is the one configured for the runtime error behavior

(section 3.3.1) even though this situation need not necessary be an error condition. However, if the

value returned from the event handler is negative, the "DCA Runtime Errors" alarm (Alarm ID 33304)

will also be raised.

Purpose: Complete the processing and drop the message

Prototype:

dca::action::drop();

Note: Invoking dca::action::drop() causes the event handler to immediately terminate execution.

Purpose: Built a Diameter Answer

Prototype:

$ans = new dca::application::answer(<error_code>, <error_text>,

<vendor_id>);

The function shall return undef in case of failure, or a diameter::Message object.

When receiving a Diameter request or answer this API function enables a DCA App to construct a

Diameter answer and either return it to the originator of the corresponding Diameter request or,

respectively, substitute the original Diameter answer message.

The EDL API (see section 10.1) may be used to further process the $ans Diameter answer (e.g. add

more AVPs).

Purpose: Send a Diameter Answer Created by the DCA App

Prototype:

dca::action::answer($ans);

Note: Invoking dca::action::answer($ans) causes the event handler to immediately terminate

execution.

Purpose: Complete the processing and pass the message

DCA Programmer's Guide 81 of 96

Prototype:

dca::action::forward();

Enables a DCA App to pass a Diameter message to the Diameter Routing Layer for routing.

Note: Invoking dca::action::forward() causes the event handler to immediately terminate

execution.

Purpose: Specify an ART based on which a Diameter request shall be routed

Prototype:

$err = dca::route::setART(<ART_table_name>);

The function shall return undef if the name of the ART does not exist (failure) or 1 if success.

Before invoking dca::action::forward() on a Diameter request, this routing API function enables

a DCA App to specify which ART to be used for routing the respective Diameter request.

Note: The ART is configurable at the B level, therefore the <ART_table_name> must be configured

on all the sites. Otherwise, the API function will fail when invoked on those DA-MP located in sites

where <ART_table_name> does not exist.

Purpose: Specify a PRT based on which a Diameter request shall be routed

Prototype:

$err = dca::route::setPRT(<PRT_table_name>);

The function shall return undef if the name of the PRT does not exist (failure) or 1 if success.

Before invoking dca::action::forward() on a Diameter request, this routing API function enables

a DCA App to specify which PRT to be used for routing the respective Diameter request.

Note: The PRT is configurable at the B level, therefore the <PRT_table_name> must be configured on

all the sites. Otherwise, the API function will fail when invoked on those DA-MP located in sites

where <PRT_table_name> does not exist.

10.5 Debugging API

The Debugging API allows tracking the execution of the event handlers by supporting the equivalent

of “printf”, “log”, “echo”, etc. functions in other programming/scripting languages.

The messages are logged in the dsr.DCA trace file (use tr.tail dsr.DCA). The following masks may be

applied using the tr.set command to filter the ERROR, INFO and WARNING error messages:

0x00000001 (error), 0x00000002 (info) and respectively 0x00000004 (warning).

All the traces generated by a DCA app using the API calls will be prefixed with the DCA application

name (in order to allow for further filtering e.g. using the grep utility).

Note however that in a production network DSR logs only the vital traces are therefore the main

debugging tool for DCA Apps in production networks is the IDIH feature.

Purpose: Retrieve the application name

82 of 96 DCA Programmer's Guide

Prototype:

$appname = dca::application::getAppName();

Purpose: Retrieve the version name

Prototype:

$vername = dca::application::getVersionName();

Note: Besides debugging, another possible use case for reading the version name is including it in the

DCA app state stored on the UDR. This will support backward compatibility in case the DCA app

frequently changes the format of the DCA app across DCA app versions.

Purpose: Retrieve the current state

Prototype:

$verstate = dca::application::getState();

Note: The states returned can be either Trial or Production, since these are the only states when the

DCA App is executed.

Purpose: Generate a trace containing user-defined messages and having a severity of INFO

Prototype:

dca::application::logInfo(<message>);

The user-defined messages shall be logged into dsr.DCA (tr.tail dsr.DCA).

Purpose: Generate a trace containing user-defined messages and having a severity of WARNING

Prototype:

dca::application::logWarn(<message>);

Purpose: Generate a trace containing user-defined messages and having a severity of ERROR

Prototype:

dca::application::logError(<message>);

10.6 Custom MEAL API

Once the Custom MEAL objects are differentiated from the Main Menu: DCA Framework→<DCA

App Name>→Custom MEALs screen (see section 9.2.2), they can be initialized and used from

DCA Apps.

10.6.1 Counter Template API

Purpose: A DCA App shall be able to bind to a Scalar Counter Custom MEAL by referring to it by

the Custom MEAL configured name:

DCA Programmer's Guide 83 of 96

Prototype:

my $all_Cnt = new dca::meal::counter(“MyCnt”);

where “MyCnt” is the name specified when differentiating a Custom MEAL template of type

“Counter” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Scalar Counter.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Scalar Counter.

Note: As a matter of best practice, the initialization of the Custom MEAL objects shall be performed

in the main body of the Perl script, which is executed once right after a successful compilation (rather

than in an event handler):

die „Custom MEAL differentiation failure“

 unless $obj = new dca::meal::<TemplateType>(“MyCustomMeal");

This ensures that a compilation error will be triggered if the binding process has failed, for instance

because there is a name mismatch between the Perl script and the differentiation GUI screen. Using an

undefined $obj later in the event handlers will trigger run-time errors.

Purpose: A DCA App shall be able to peg a Scalar Counter Custom MEAL:

Prototype:

$err = $all_Cnt->peg();

where $all_Cnt shall be a valid Scalar Counter Custom MEAL object.

The API call shall return 1 if success and undef if the operation on the underlying Comcol object has

failed.

Purpose: A DCA App shall be able to bind to an Arrayed Counter Custom MEAL by referring to it

by the Custom MEAL configured name:

Prototype:

my $per_Cnt = new dca::meal::arrayedCounter(“MyArrayedCnt");

where “MyArrayedCnt” is the name specified when differentiating a Custom MEAL template of type

“Counter” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Arrayed Counter.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not an Arrayed Counter.

Purpose: A DCA App shall be able to peg a specific index of an Arrayed Counter Custom MEAL:

Prototype:

$err = $per_Cnt->peg($index);

84 of 96 DCA Programmer's Guide

where $per_Cnt shall be a valid Arrayed Counter Custom MEAL object and $index is the index to be

pegged.

The API call shall return 1 if success and undef if the either operation on the underlying Comcol

object has failed or the index value is negative.

10.6.2 Rate Template

Purpose: A DCA App shall be able to bind to a Scalar Rate Custom MEAL by referring to it by the

Custom MEAL configured name:

Prototype:

my $all_Rate = new dca::meal::rate(“MyRate");

where “MyRate” is the name specified when differentiating a Custom MEAL template of type “Rate”

and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Scalar Rate.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Scalar Rate.

Purpose: A DCA App shall be able to peg a Scalar Rate Custom MEAL:

Prototype:

$err = $all_Rate->peg();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return 1 if success and undef if the operation on the underlying Comcol object has

failed.

Purpose: A DCA App shall be able to read the current value of a Scalar Rate Custom MEAL:

Prototype:

$val = $all_Rate->readRate();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return an integer representing the current value in case of success and undef if the

operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to read the average value of a Scalar Rate Custom MEAL:

Prototype:

$val = $all_Rate->readAvgRate();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return an integer representing the average value in case of success and undef if the

operation on the underlying Comcol object has failed.

DCA Programmer's Guide 85 of 96

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an

Scalar Rate template:

Prototype:

$err = $all_Rate->getSeverity();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

• undef if the operation on the underlying Comcol object has failed.

Note: The severity values are defined as:

 use constant {

 Cleared => 0,

 Info => 1,

 Minor => 2,

 Major => 3,

 Critical => 4,

 };

which enables comparing them. For instance:

 if ($all_Rate->getSeverity() >= dca::meal::Major)

will be true if the severity is Major or Critical and will be false if the severity if Minor. This also

applies to Basic as well as arrayed templates.

Purpose: A DCA App shall be able to bind to an Arrayed Rate Custom MEAL by referring to it by

the Custom MEAL configured name:

Prototype:

my $per_Rate = new dca::meal::arrayedRate(“MyArrayedRate");

where “MyArrayedRate” is the name specified when differentiating a Custom MEAL template of type

“Rate” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Arrayed Rate.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not an Arrayed Rate.

Purpose: A DCA App shall be able to peg a specific index of an Arrayed Rate Custom MEAL:

Prototype:

$err = $per_Rate->peg($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the index to be

pegged.

The API call shall return 1 if success and undef if either the operation on the underlying Comcol

object has failed or the index value is negative.

Purpose: A DCA App shall be able to read the current value of a specific index of an Arrayed Rate

Custom MEAL:

Prototype:

86 of 96 DCA Programmer's Guide

$val = $per_Rate->readRate($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the index the

current value of which shall be read.

The API call shall return an integer representing the current value of the specified index in case of

success and undef if either the operation on the underlying Comcol object has failed or the index

value is negative.

Purpose: A DCA App shall be able to read the average value of a specific index of an Arrayed Rate

Custom MEAL:

Prototype:

$val = $per_Rate->readAvgRate($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the index the

average value of which shall be pegged.

The API call shall return an integer representing the average value of the specified index in case of

success and undef if either the operation on the underlying Comcol object has failed or the index

value is negative.

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an

Arrayed Rate template:

Prototype:

$err = $per_Rate->getSeverity($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index identifies the

particular index the alarm status of which shall be read.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

• undef if either the operation on the underlying Comcol object has failed or the index value is

negative.

10.6.3 Basic Template

Purpose: A DCA App shall be able to bind to a Scalar Basic Custom MEAL by referring to it by the

Custom MEAL configured name:

Prototype:

my $all_Size = new dca::meal::basic(“MyBasic");

where “MyBasic” is the name specified when differentiating a Custom MEAL template of type

“Basic” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Scalar Basic template.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Scalar Basic.

DCA Programmer's Guide 87 of 96

Purpose: A DCA App shall be able to set the value of a Scalar Basic Custom MEAL:

Prototype:

$err = $all_Size->setValue($value);

where $all_Size shall be a valid Scalar Basic Custom MEAL object and $value is the value the

Scalar Basic Custom MEAL shall be set to.

The API call shall return 1 if success and undef if the operation on the underlying Comcol object has

failed.

Purpose: A DCA App shall be able to increment the value of a Scalar Basic Custom MEAL:

Prototype:

$err = $all_Size->increment($count);

where $all_Size shall be a valid Scalar Basic Custom MEAL object and $count is the value the

Scalar Basic Custom MEAL shall be incremented with.

The API call shall return 1 if success and undef if the operation on the underlying Comcol object has

failed.

Purpose: A DCA App shall be able to decrement the value of a Scalar Basic Custom MEAL:

Prototype:

$err = $all_Size->decrement($count);

where $all_Size shall be a valid Scalar Basic Custom MEAL object and $count is the value the

Scalar Basic Custom MEAL shall be decremented with.

The API call shall return 1 if success and undef if the operation on the underlying Comcol object has

failed.

Purpose: A DCA App shall be able to read the current value of a Scalar Basic Custom MEAL:

Prototype:

$val = $all_Size->getValue();

where $all_Size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return an integer representing the current value in case of success and undef if the

operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to read the average value of a Scalar Basic Custom MEAL:

Prototype:

$val = $all_Size->getAvgValue();

where $all_Size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return an integer representing the average value in case of success and undef if the

operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an

Scalar Basic template:

Prototype:

$err = $all_Size->getSeverity();

where $all_Size shall be a valid Scalar Basic Custom MEAL object.

88 of 96 DCA Programmer's Guide

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

• undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to bind to an Arrayed Basic Custom MEAL by referring to it by

the Custom MEAL configured name:

Prototype:

my $per_Size = new dca::meal::arrayedBasic(“MyArrayedBasic");

where “MyArrayedBasic” is the name specified when differentiating a Custom MEAL template of

type “Basic” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Arrayed Basic template.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not an Arrayed Basic.

Purpose: A DCA App shall be able to set the value of an Arrayed Basic Custom MEAL:

Prototype:

$err = $per_Size->setValue($value, $index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the value

of which shall be set and $value is the value it shall be set to.

The API call shall return 1 if success and undef if either the operation on the underlying Comcol

object has failed or the index value is negative.

Purpose: A DCA App shall be able to increment the value of an Arrayed Basic Custom MEAL:

Prototype:

$err = $per_Size->increment($count, $index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the value

of which shall be incremented and $count is the value it shall be incremented with.

The API call shall return 1 if success and undef if either the operation on the underlying Comcol

object has failed or the index value is negative.

Purpose: A DCA App shall be able to decrement the value of an Arrayed Basic Custom MEAL:

Prototype:

$err = $per_Size->decrement($count, $index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the value

of which shall be decremented and $count is the value it shall be decremented with.

The API call shall return 1 if success and undef if either the operation on the underlying Comcol

object has failed or the index value is negative.

Purpose: A DCA App shall be able to read the current value of an Arrayed Basic Custom MEAL:

Prototype:

DCA Programmer's Guide 89 of 96

$val = $per_Size->getValue($index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object and $index is the index the

value of which shall be read.

The API call shall return an integer representing the current value of the specified index in case of

success and undef if either the operation on the underlying Comcol object has failed or the index

value is negative.

Purpose: A DCA App shall be able to read the average value of an Arrayed Basic Custom MEAL:

Prototype:

$val = $per_Size->getAvgValue($index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object and $index is the index the

average value of which shall be read.

The API call shall return an integer representing the average value of the specified index in case of

success and undef if either the operation on the underlying Comcol object has failed or the index

value is negative.

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an

Arrayed Basic template:

Prototype:

$err = $per_Size->getSeverity($index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object and $index identifies the

particular index the alarm status of which shall be read.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

• undef if either the operation on the underlying Comcol object has failed or the index value is

negative.

10.6.4 Event Template

Purpose: DCA App shall be able to bind to an Event Custom MEAL by referring to it by the Custom

MEAL configured name:

Prototype:

my $errorEvent = new dca::meal::event(“MyEvent");

where “MyEvent” is the name specified when differentiating a Custom MEAL template of type

“Event”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object

may be used in subsequent API calls to perform specific operations on the Event.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet completed,

or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Event.

90 of 96 DCA Programmer's Guide

Purpose: A DCA App shall be able to generate an event (Info severity), raise an alarm (Minor,

Major, Critical severity) and clear an alarm (Clear severity):

Prototype:

$err = $errorEvent->log($severity, $addInfoText);

where $errorEvent shall be a valid Event Custom MEAL object, $severity is one of the possible

values (dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared) and

$addInfoText is the text that should be included in the alarm’s additional information field.

The API call shall return 1 if success and undef if the operation on the underlying Comcol object has

failed.

Purpose: A DCA App shall be able to determine whether an event or alarm is throttled:

Prototype:

$err = $errorEvent->isThrottled($severity);

where $errorEvent shall be a valid Event Custom MEAL object, $severity is one of the possible

values (dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Info).

The API call shall return:

• 1 if the event/alarm is throttled;

• 0 if the event/alarm is not throttled;

• undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to determine the current severity of an event or alarm:

Prototype:

$err = $errorEvent->getSeverity();

where $errorEvent shall be a valid Event Custom MEAL object.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Info,
dca::meal::Cleared

• undef if the operation on the underlying Comcol object has failed.

10.7 UDR API

The UDR API enables a DCA App to create, read, update and delete data in a UDR DB. As described

in section Error! Reference source not found. the UDR API calls work asynchronously and a c

allback subroutine is necessary in order to fetch the result of the query.

10.7.1 The Prototype of Queries and Query Results

This section describes the common structure of the UDR API functions and how the results of a UDR

query can be retrieved in the Perl script.

Section 10.7.2 further describes the particularities of each individual UDR API function.

10.7.1.1 Specifying the Query

All the UDR API functions share a common prototype:

$err = dca::udr::udrInstance(<GLOBAL_UDR>)-><API_function>(

 <key_type>, <key_data_type>, $key,

DCA Programmer's Guide 91 of 96

 <value_data_type>, $value,

 <callback_subroutine>,

);

where:

• <GLOBAL_UDR> is a string (a constant value or a scalar variable) containing the global name of the

UDR DB the query shall be sent to.

• <API_function> is one of: createOrRead, update, bulkDelete ..

• <key_type> is typically a constant value defined by the DCA App. It distinguishes between

different key types that a DCA App may use (e.g. IMSI, NAI, IP, IP_SRC, etc.). For example, the

key value "fred" of type "NAI" is a different key from 66.72.65.64 of type "IP", even though they

have the same binary representation;

• <key_data_type> is pre-defined constant that describes the data type of the key and must be one

of:

o dca::udr::KeyDataType::BCD – the key shall be a scalar,

o dca::udr::KeyDataType::UINT32 – the key shall be a scalar,

o dca::udr::KeyDataType::UINT64 – the key shall be a scalar,

o dca::udr::KeyDataType::STRING – the key shall be a scalar,

o dca::udr::KeyDataType::IPv4 – the key shall be a NetAddr::IP object,

o dca::udr::KeyDataType::IPv6 – the key shall be a NetAddr::IP object.

Note: There is no explicit data type for float numbers, float numbers will be converted to

strings.

• $key is a Perl variable that holds the key part of the key-value pair to be created, read, updated or

deleted.

• <value_data_type> is pre-defined constant that describes the data type of the key and must be

one of:

o dca::udr::StateDataType::BCD – the key shall be a scalar,

o dca::udr::StateDataType::UINT32 – the key shall be a scalar,

o dca::udr::StateDataType::UINT64 – the key shall be a scalar,

o dca::udr::StateDataType::STRING – the key shall be a scalar, an array reference or a

hash reference.,

Note: Arrays and hashes are encoded into JSON and stored in the UDR DB in string format.

o dca::udr::StateDataType::IPv4 – the key shall be a NetAddr::IP object,

o dca::idr::StateDataType::IPv6 – the key shall be a NetAddr::IP object.

Note: There is no explicit data type for float numbers, float numbers will be converted to

strings.

• $value is a Perl variable that holds the value part of the key-value pair to be written into the UDR

(via create or update operations). Note therefore that read and delete do not specify a $value

parameter and as a result also no <value_data_type> parameter;

• <callback_subroutine> is a string representing the name of the Perl subroutine that will be

invoked by the DCA framework to deliver the query result;

The API call shall return:

• 1 if the parameters are successfully parsed and encoding into a Stack Event.

Note that, because the API call works asynchronously, at this stage the query hasn't been sent yet,

its outcome cannot be known, $err merely tells whether a query could be successfully built.

• undef if parsing or encoding the parameters fails.

92 of 96 DCA Programmer's Guide

10.7.1.2 Retrieving the Query Result

The result of a UDR query can be retrieved in the callback function by using the

dca::udr::result() class. An error code will always be returned and some queries also return data

(consisting of the data type along with the data itself):

1. $err_code = dca::udr::result()->code();

Retrieves the error code. If the error codes indicates success (dca::udr::ResultCode::Success)

then some API functions also return data, which can be retrieved using the dataType() and

data() methods described below.

A number of error codes are common to all UDR API functions:

o dca::udr::ResultCode::Success – indicates the query has successfully executed the

intended operation;

o dca::udr::ResultCode::AccessError – an error occurred on the UDR side that prevented

the query to be executed;

o dca::udr::ResultCode::SendError – an error occurred when attempting to send the query,

typically because of ComAgent overload (ComAgent related alarms will be raised in this

case);

o dca::udr::ResultCode::MaxStateSize – the size of either the key or the data, the DCA

App attempts to look up or respectively store in the UDR DB, exceeds the configured

maximum sizes (Main Menu: DCA Framework→Configuration, "Maximum Size of

Application State" and respectively "Maximum Size of the Key" options)

o dca::udr::ResultCode::MaxEventReached – the maximum number of UDR queries that a

Diameter message event handler is allowed to send has been exceeded (see Main Menu:

DCA Framework→<DCA App Name>→General Options, "Max. UDR Queries per

Message" option).

2. $data_type = dca::udr::result()->dataType();

If the result contains data, then datatype() will return the data type of the stored data, i.e. one

of: dca::udr::StateDataType::BCD, dca::udr::StateDataType::UINT32,

dca::udr::StateDataType::UINT64, dca::udr::StateDataType::STRING,

dca::udr::StateDataType::IPv4, dca::udr::StateDataType::IPv6;

If the result contains no data, then datatype() will return undef.

3. $data = dca::udr::result()->data();

If the result contains data, then data() will return the stored data.

If the result contains no data, then data() will return undef.

10.7.2 The UDR API Functions

Purpose: Attempts to create a key-value record in a UDR DB or fails if a record with the same key

already exists.

Prototype: (see also section 10.7.1.1)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->create(

 <key_type>, <key_data_type>, $key,

 <value_data_type>, $value,

 <callback_subroutine>);

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca::udr::result()->code() dca::udr::result()

->dataType()

dca::udr::result()

->data()

DCA Programmer's Guide 93 of 96

dca::udr::ResultCode::Success

(The record does not exist and was created)

undef undef

dca::udr::ResultCode:: AccessError,
dca::udr::ResultCode::SendError
dca::udr::ResultCode::MaxStateSize

dca::udr::ResultCode::MaxEventReached

undef undef

 undef undef

Purpose: Creates a key-value record in a UDR DB or returns the record, if a record with the same key

already exists.

Prototype: (see also section 10.7.1.1)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->createOrRead(

 <key_type>, <key_data_type>, $key,

 <value_data_type>, $value,

 <callback_subroutine>,

);

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca::udr::result()->code() dca::udr::result()

->dataType()

dca::udr::result()

->data()

dca::udr::ResultCode::Success

(The record does not exist and was created)

undef undef

dca::udr::ResultCode::DBError,
dca::udr::ResultCode::SendError
dca::udr::ResultCode::AccessError
dca::udr::ResultCode::MaxStateSize

dca::udr::ResultCode::MaxEventReached

undef undef

Purpose: Reads the value associated to a key from the UDR DB, or fails if the key is not found.

Prototype: (see also section 10.7.1.1)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->read(

 <key_type>, <key_data_type>, $key,

 <callback_subroutine>,

);

Note that no $value parameter is present since no value is supposed to be written into the UDR DB.

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca::udr::result()->code() dca::udr::result()

->dataType()

dca::udr::result()

->data()

dca::udr::ResultCode::Success

(The record exists and was read)

The data type of the

existing record

The existing record

dca::udr::ResultCode::DBError,
dca::udr::ResultCode::SendError
dca::udr::ResultCode::AccessError
dca::udr::ResultCode::MaxStateSize

dca::udr::ResultCode::MaxEventReached

undef undef

94 of 96 DCA Programmer's Guide

Purpose: Attempts to update the value associated with a key in the UDR DB or fails if a record with

the key could not be found.

Prototype: (see also section 10.7.1.1)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->update(

 <key_type>, <key_data_type>, $key,

 <value_data_type>, $value,

 <callback_subroutine>);

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca::udr::result()->code() dca::udr::result()

->dataType()

dca::udr::result()

->data()

dca::udr::ResultCode::Success

(The record exists and was updated)

undef undef

dca::udr::ResultCode::DBError,
dca::udr::ResultCode::SendError
dca::udr::ResultCode::AccessError
dca::udr::ResultCode::MaxStateSize

dca::udr::ResultCode::MaxEventReached

undef undef

Purpose: Attempts to create or update the value associated with a key

Prototype: (see also section 10.7.1.1)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->createOrUpdateRequest(

 <key_type>, <key_data_type>, $key,

 <value_data_type>, $value,

 <callback_subroutine>);

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca::udr::result()->code() dca::udr::result()

->dataType()

dca::udr::result()

->data()

dca::udr::ResultCode::Success

(The record exists and was successfully updated)

undef undef

dca::udr::ResultCode::DBError,
dca::udr::ResultCode::SendError
dca::udr::ResultCode::AccessError
dca::udr::ResultCode::MaxStateSize

dca::udr::ResultCode::MaxEventReached

undef undef

Purpose: Deletes a key-value record from the UDR DB, or fails if the key is not found.

Prototype: (see also section 10.7.1.1)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->bulkDelete(

 <key_type>, <key_data_type>, $key,

 <callback_subroutine>);

Note that no $value parameter is present since no value is supposed to be written into the UDR DB.

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca::udr::result()->code() dca::udr::result()

->dataType()

dca::udr::result()

->data()

dca::udr::ResultCode::Success

(The record exists and was deleted)

undef undef

dca::udr::ResultCode::DBError, undef undef

DCA Programmer's Guide 95 of 96

dca::udr::ResultCode::SendError
dca::udr::ResultCode::AccessError
dca::udr::ResultCode::MaxStateSize

dca::udr::ResultCode::MaxEventReached

96 of 96 DCA Programmer's Guide

A.1 Notes

1) Reserved keywords: initDcaVars

	1 Introduction
	1.1 References
	1.2 Glossary
	1.3 Terminology

	2 DCA Activation and Deactivation
	2.1 DCA Activation
	2.1.1 DCA Framework Activation
	2.1.2 DCA App Activation
	2.1.3 Post-Activation DCA App State

	2.2 DCA Deactivation
	2.2.1 DCA Application De-Activation
	2.2.2 DCA Framework De-Activation

	3 DCA App Provisioning – The “Blacklist” DCA App
	3.1 The „Blacklist“ DCA App
	3.2 Prerequisites
	3.3 The Process
	3.3.1 Step 1: Configure the DCA App's General Options and Behavior
	3.3.2 Step 2: Create New Development Application Version
	3.3.3 Step 3: Define the configuration data structure
	3.3.4 Step 4: Provision the Configuration Data
	3.3.5 Step 5: Provision the Business Logic
	3.3.5.1 Where is the Perl script being executed?
	3.3.5.2 How do the Event Handlers get invoked?
	3.3.5.3 How does the DCA App configuration data get accessed?
	3.3.5.4 What is the „main part“ good for?

	3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax
	3.3.7 Step 7: Test the DCA App Version
	3.3.8 Step 8: Promote the DCA App Version to Production State

	4 DCA Application Lifecycle
	5 Developing Statefull DCA Apps
	6 A Statefull DCA App Using the UDR DB
	6.1 The „CountULR“ DCA App
	6.2 Prerequisites
	6.3 The Process
	6.3.1 Step 1: Configure the DCA App's Global Options and Behavior
	6.3.2 Step 2: Create a New Development Version
	6.3.3 Step A: Configure the UDR DBs
	6.3.3.1 Configure UDR DB as Remote server
	6.3.3.1.1 ComAgent Configuration on DSR
	6.3.3.1.2 Comagent Configuration on UDR
	6.3.3.1.3 Comagent Connection Status Validation

	6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application
	6.3.3.3 Audit Time Configuration on Active UDR NOAM

	6.3.4 Step 3: Define the Configuration Data Schema
	6.3.5 Step 4: Provision the Configuration Data
	6.3.6 Step 5: Provision the DCA App Business Logic
	6.3.6.1 What does a “state” consist of?
	6.3.6.2 What are Asynchronous API Calls and Callbacks?
	6.3.6.3 How is the UDR state returned to the Perl script?

	6.3.7 Step 6: Render the Flow Control Chart
	6.3.8 Step 7: Test the DCA App Version
	6.3.9 Step 8: Promote the DCA App Version to Production

	7 Monitoring a DCA App
	8 A DCA App Using Custom MEALs
	8.1 The „Rate“ DCA App
	8.2 Prerequisites
	8.3 The Process
	8.3.1 Step I: Differentiate a C-MEAL
	8.3.2 Step 1: Configure the DCA App's General Options and Behavior
	8.3.3 Step 2: Create a New Development Version
	8.3.4 Step 3: Define the Configuration Data Schema
	8.3.5 Step 4: Provision the Configuration Data
	8.3.6 Step 5: Provision the DCA App Business Logic
	8.3.7 Step 6: Render the Flow Control Chart
	8.3.8 Step 7: Test the DCA App Version
	8.3.9 Step 8: Promote the DCA App Version to Production

	9 GUI Overview
	9.1 NO/SO differences
	9.2 NO Screens
	9.2.1 Configuration Screen
	9.2.2 Custom MEALs
	9.2.2.1 View Custom MEALs
	9.2.2.2 Configure the Counter Custom MEAL Template
	9.2.2.3 Configure the Basic Custom MEAL Template
	9.2.2.4 Configure the Rate Custom MEAL Template
	9.2.2.5 Configure the Event Custom MEAL Template

	9.2.3 General Options Screen
	9.2.4 Trial MPs Assignment Screen
	9.2.5 Application Control Screen
	9.2.6 Create New Development Screen
	9.2.7 Copy to New Development Screen
	9.2.8 Export Pop-Up Window
	9.2.9 Import Pop-Up Window
	9.2.10 Development Environment
	9.2.11 Tables Screen
	9.2.12 Provision Tables Screen

	9.3 SO Screens
	9.3.1 Application Control Screen
	9.3.2 Export Pop-Up Window
	9.3.3 Import Pop-Up Window
	9.3.4 Tables Screen
	9.3.5 Provision Tables Screen

	9.4 System Options

	10 APIs
	10.1 The EDL API
	10.1.1 API to Manipulate the Diameter Header
	10.1.2 API to Manipulate the Diameter AVPs
	10.1.3 API to Manipulate the Diameter Grouped AVPs

	10.2 Diameter Transaction Stateful APIs
	10.2.1 Internal Variables
	10.2.2 Diameter Transaction Context Variables

	10.3 Read DCA App Configuration Data
	10.4 Routing API
	10.5 Debugging API
	10.6 Custom MEAL API
	10.6.1 Counter Template API
	10.6.2 Rate Template
	10.6.3 Basic Template
	10.6.4 Event Template

	10.7 UDR API
	10.7.1 The Prototype of Queries and Query Results
	10.7.1.1 Specifying the Query
	10.7.1.2 Retrieving the Query Result

	10.7.2 The UDR API Functions

	A.1 Notes

