ORACLE

Oracle® Communications
Diameter Signaling Router

Diameter Custom Applications with Unified Data Repository Programmer Guide

Release 8.5.1
F51155-01

December 2021

Oracle Communications, DSR Release Notice, Release 8.5.1

Copyright © 2011, 2021, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the Hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the Hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or Hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or Hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software or Hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or Hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

2 0f 96

Table of Contents

1 INTRODUCGTION ..ccuuiiieenerienniereenseereenscerennseessnsseesssssessssssesssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnsssssanssesssnsseses 8
1.1 REFERENCES. et tteteteteteseseresesesesesasesesesesesesesases 8
1.2 GLOSSARY .vvvvvrerereresesesesesssnsnnnsnne 8
1.3 TERMINOLOGY ..uuiiietttuuuueeeeeeetetuuueseeesetesuueeseseesasssnsssseeessssssnssesesssssssssssesesensssssnesesessssssnnneseeeressssnnseseeenssnnnns 9

2 DCA ACTIVATION AND DEACTIVATIONcoiiieeeeennieeerireenmnsseeeseeeennssssssessesesnsssssssesssssnnnssssssssssssnnnssssssssnes 10
2.1 DCA ACTIVATION ..oeveeeeeieceeeeeeeenens

2.1.1 DCA Framework Activation

2.1.2 DCA APP ACEIVATION ...ttt ettt satat e tesaeaa s e se s e e e sesesesasesssssasnsnsnsnnnnennnenens

2.1.3 POSt-ActiVation DCA APPD SEALE ...oeeveveeeieiieiiiiiiiiiiiiiiiiiietitttttttaeeetesseseesasesesesesesesssssesesesesessssssseseseseren 12
2.2 DCA DEACTIVATION . eteteteeetesesesesesesesesesesesesasesesesesasesssesesesesesessssseseseseseseseseses 12

2.2.1 DCA APPLication DE-ACHIVALIONcocuueeeueieiiieiiiesieeeitese ettt ettt ettt ettt eenee e 12

2.2.2 DCA FrameWOrk DE-ACEIVATIONuuuuueeeeeeeeeeeeeeeeeieseeeesesssessssssssssssssssssssssssssssssessssssssssssssssrssesss. 13

3 DCA APP PROVISIONING — THE “BLACKLIST” DCA APPceiireeeeeenceeereeeennnsneeereeeennnssssesssessnnnssssessseens 14
3.1 THE ,,BLACKLIST DCA APPcitteeee e e e eecttee e e e e eeeatae e e e e e eesaataeeeeeeeesssbaaaeeeeeesassbasseeeeeesasnsssaeseeeeesansrsaeeeens 14
3.2 PREREQUISITES

33 THE PROCESS
3.3.1 Step 1: Configure the DCA App's General Options and Behavior
3.3.2 Step 2: Create New Development Application Version ...

3.3.3 Step 3: Define the configuration dat@ StrUCLUIEcoovueeeieeiieeniiesieeeee et
3.3.4 Step 4: Provision the Configuration DAtQ...............cccueeveeenueenieenieenieesieeeee sttt
3.3.5 Step 5: Provision the BUSINESS LOGIC........cc..couvueerueierieeniiesieeeiieesie et esie sttt ste e st sieesnee e
3.3.5.1 Where is the Perl script DeING @XECULEA?ccocuiiiiiiiie et e e e et eebae e e eareeas 19
3.3.5.2 How do the Event Handlers get invoked?cccccceeveeeiiveecnneen.
3.3.5.3 How does the DCA App configuration data get acCeSSEA?c.uiiiiiiiiiiiiiieriiee et 19
3.354 What is the ,,main Part” 800d fOr?u i st ere e 20
3.3.6 Step 6: Render Flow Control Chart, Save Script, Check SYNtaX........cccccvueeeeevveersceeeeesiesessiieessvennnn 20
3.3.7 Step 7: TSt the DCA APP VEISIONueeeeeeeeeiieeeeeee ettt e e ee ettt a e e e st ettt aa e e e sessassaeaaaesessssssnnees 21
3.3.8 Step 8: Promote the DCA App Version to Production StQteccceeeeeeceivveeieeeeesciiieeseeeeeesvsenn 22
4 DCA APPLICATION LIFECYCLEuuuuiiiiisiiisssnss 24
5 DEVELOPING STATEFULL DCA APPScooeeieiieeeeeeeeeeeeeeeeeeeeeeeeeesesssnss 27

6 A STATEFULL DCA APP USING THE UDR DB

6.1 THE ,,COUNTULR” DCA App

6.2 PREREQUISITES 1ttt teettuuuueeeeeeseaununseseeessssunnnsesesennssnssnsesessnssnnssesessnsssssnnseseesnssssnnnsesesenssssnnssesessnssnnnnesesennes
6.3 THE PROCESS ..t teeeteeaiittttee e e e ettt ettt e e e sttt et e e e s e aae b et e e e e e aeaannbaeeeeeeaaannbeb et eeesesannbabeeeeeseannbaneeeeesesannsnnneeaens
6.3.1 Step 1: Configure the DCA App's Global Options and BERQVIOFccceeeeeiueeeeciieeaesiireeaesireaaanns 29
6.3.2 Step 2: Create a New Development VEISIONueuieeeeeciieiieeeeecciiieeeeeeeeesiisesaaaeeesssssssasaaeeessnans 29
6.3.3 Step A: CONFIGUIE tNE UDR DBSccc.eueeeeeeeeeeeeee et etee e e ettt e eettaaeetvaaaesstsaaesasssaaesassaaessssesanns 29
6.3.3.1 Configure UDR DB @S REMOTE SEIVETiiiiuiieiiiiieeiiiie sttt e siieeesiteessbteesssteeesbaeessabaessnssaeesssesssnsseesssssens 29
6.3.3.1.1 ComAgent Configuration on DSR
6.3.3.1.2 Comagent Configuration 0N UDRcccciiririiiienieesieesee et e et eseeeste e s e e saeesnaeeteesaseesseesnseenseeenseesnes 31
6.3.3.1.3 Comagent Connection Status Validationceeeeeeceeiieirie et 31
6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Applicationcccevvviiiiieeeiiiieeiieeeeeiieessiee e 34
6.3.3.3 Audit Time Configuration on Active UDR NOAMccoiiiiiiiiieeiiieeeiieeesireeesreeesseaee e siaee s svaeesseeassneneas 34
6.3.4 Step 3: Define the Configuration DAt SCREMQccoecuveeeeeciiieeeciieeesieeeeceeeeeeaeesireaeesseaeens 35
6.3.5 Step 4: Provision the Configuration DAtA...............uuueeeieeeeeieiiiieeeeeeeciieeee e e eeetsaeeaeaeeeesssasaaaaeeesiians 35
6.3.6 Step 5: Provision the DCA APP BUSINESS LOGIC..........uueeeeeeeeieiiiaaeeeeeeiiiieeeeeeeeesiiseeaeaeeeessssssasaaeeasinans 35
6.3.6.1 What does @ “State” CONSIST OF? ..c.uiiiieeiiie et ee e e s e e re e sree e neeenseesneeenseean 38
6.3.6.2 What are Asynchronous API Calls and Callbacks?
6.3.6.3 How is the UDR state returned to the Perl SCript?c.cooiciiiiiiiie ettt vee e siee e 38
6.3.7 Step 6: Render the FIOW CONLIOI CAGIt.........ccccceeeeeeeieeieeeeeieeeee e et a e e e ettt e e e e eesssaaaaaaeeassans 38

DCA Programmer's Guide 3 of 96

6.3.8 Step 7: Test the DCA APP VEISIONuueeeeeeeeeeeeeeee ettt e e e e ettt a e e e e et sitaaeaaaeeeasstssseaaaeeassans 39

6.3.9 Step 8: Promote the DCA App Version t0 ProdUCION...........ceevuvevcueesivesieesiienieesieesieesiieesieenisens 39

7 IMONITORING A DCA APP.....ooeeeiiieeeeeeeeeeeeteeteeeeeeeeeeeteteteestttteestttetesss 40
8 A DCA APP USING CUSTOM MEALS........cciiiiiiiiiiisiisississes 41
8.1 THE ,,RATE DCA APP ..ttt eite ettt et ettt e sttt s sbt e sttt s sbte e bt e e sbbeesate e sabeesbteesabaesateesabeesaaeesabeesaseesataesaseens 41
8.2 PREREQUISITES -ttt teee e e e e s e s e s e s e s e s e e e e s se s e s e s e s e se s e s e s e s e s e s e s e s e s e sesesasasesasasasasasasasasasasesasasasasasasasasasasesesasess 41
8.3 THE PROCESS ..t eeeeee ettt ettt ettt et e e eeeaeeataaaaeaaeeaaaatesesesesasererenenens 41
8.3.1 Step I: DIfferentiote G C-IMEALcoo.eooeeeeieeeeeeeee ettt ettt 42
8.3.2 Step 1: Configure the DCA App's General Options and BERQVIOrccccceceeeveeeseeeseeesieeeene 42
8.3.3 Step 2: Create a New Development VEISiONccecccueeeesieeeeeciieeesiiiieesissaeesseseesissesesssssesssenes 42
8.3.4 Step 3: Define the Configuration DAta SCAEMQcccuuveecueeeeeciiieeeeiieeeceeeeeseeeeseveaeestraaesreeans 42
8.3.5 Step 4: Provision the CONfiguration DOTQ.............cccueeeecuereesireeeeesiieeesititeesitseesssesaeasssesessssssessseees 42
8.3.6 Step 5: Provision the DCA APP BUSINESS LOGIC..........ceevueerueieeieieeeeeeeeeee et 42
8.3.7 Step 6: Render the FIOW CONtrol CAQIt...........coeueeeieeeiieiiieee et 43
8.3.8 Step 7: TeSt the DCA APD VEISIONooeueerieieeeeiieeee ettt ettt siee st 43
8.3.9 Step 8: Promote the DCA App Version to ProdUCLiON............c..ceeecuueeeeeciiieesiiieesiiieeeeiiieaesiieaesaienens 46

9 GUI OVERVIEW ...ttt ssnnes 47
9.1 INO/SO DIFFERENCES w.vvuveeuvessresseesseesseesseeseasssassesssesseessesssesssesssesssesssesssesssensessseassesssessesssesssesssesssesssesseesses 47
9.2 INO SCREENS. .. ttteeeuitteeeetteeesutteeesubeteseubteesauateeesabteeeaasbeeesaaseeeesabeeeeeasbeeesansteeesansaeesaabbeesansbaeesannaaeesanreeennn 47
9.2.1 CONFIGUIALION SCIEEIM ...ttt ettt et e ste st e st e sate e s st e sseesneesseenas 48
9.2.2 CUSEOIM IMEALS ..ottt ettt e e e e e ettt ae e e e ettt ae s s s e e et atasseaesaeaesaaaaeeeaaassssnnnessaaesesnnn 48
9.2.2.1 VIEW CUSTOM IMIEALS ...ceiiieiiiiitiee e ettt e e sttt e e e e e sttt e e e e s et bt e e e s e s asbbbeeeeesesnsbaeeeesessnssbaeeeeesansnnrnaaeenns 48
9.2.2.2 Configure the Counter Custom MEAL TeMPIate......c..eiiiiuiieiiiieeciiee ettt e esbae e e 49
9.2.2.3 Configure the Basic Custom MEAL TEMPIALEoevuiievieerieiiieiieeiee ettt et eeesaeeebeesaaeeneee s 49
9.2.2.4 Configure the Rate Custom MEAL Te@MPIAtecooueiriiiiieiiiecieeee ettt 50
9.2.2.5 Configure the Event Custom MEAL TEMPIALEoiieiiiiiiiiieiiiiie ettt stre e s sbae e s sneaeas 51
9.2.3 GENEIQAI OPLIONS SCIEEM. ...ttt ettt s et e ste st e st e st e st e sseesneesneenas 52
9.2.4 Trial MPS ASSIGNMENT SCIEEIMcccceeeeeeeieieeeetieeeeeeeeettteeettaaeesttaaeatssaeeassaaaesasasaaatsasesssssssessssnans 53
9.2.5 APPLICAtioN CONEIOI SCIEEON.....cccceeeeeeeee ettt e ettt e e e e e ettt e e e e e s s ettt a e e e e e e s asbaeaaaeeesssssnnees 53
9.2.6 Create NeW DeVvelOPMENTt SCIEENcccceeeeeueieieieeeeeeecieeee e e ee et ateee e e e e e s esse e e e e e eesssssasaaassessssssnsees 54
9.2.7 CopY to NeW DEVEIOPMENT SCIEENccceeeeeieiieeieeeeeeccieeeee e eees et e e e e e es et aaaaesssssssasaaaeeessssssneens 54
9.2.8 EXPOIt POP-UP WINGOW........ooeeeiiiieeiee ettt eetea ettt e e ettt e e e e e e ttaaesataaessustaasasseaessssnassnssenens 55
9.2.9 IMPOrt POP-UP WINAOWooeeeeiieeeieeeeeieeeet e eetee ettt e e ettt e e a e s ttea e s taa e ssuseaasasseaesssssassassenens 56
9.2.10 Development ENVIFONMENTc..uueeeceieeeeeiieeeeiee e e steeeeette e sateaesssteassesstaesassaaasssssassasseasssnseeens 57
9.2.11 TADICS SCIEEN ...ttt ettt et s e sttt e s e et e st et eesateenane s 57
9.2.12 ProViSioN TADBIES SCIrEEMc..eeeeeeieeeeeeeeee ettt ettt e ettt et e e e sbbe e e s saaeeeesaseeens 60
9.3 SO SCREENS .eeeeeeuuuttttteeeeeaauttetteeeesesaubebteeeeeesaaneb et et eeesaaans b e e e e eeeseaansbe b et eeeeesannseseeeeeeesaannbebeeeeesannnrnnneeeens 62
L2 R YeTo) [Tolo] 1 (o] W @le g 14 g o] BN Yol ¢ =1-1 ¢ FOS S UUUR 62
9.3.2 EXPOIt POP-UP WINAOW........oeeeeiiiieeiee ettt eettee ettt e e ettt e estaa e st e e s aaaaassaseaasasseaessssnaesasseneas 63
9.3.3 IMPOrt POP-UP WINUOWooeeeeiieeeieeeeee ettt e ettt e e ettt e e e a e s tte e e s tta e ssastaasasteaesssseaesassenens 63
9.3.4 TADIES SCIEEN ...ttt ettt ettt e s e st e s et e st n e st e teennee e 63
9.3.5 ProvViSiON TOADIES SCIEEN...........coveeeeeiiesieet ettt ettt et s e st sate e st e st e st e ssessseesaneenas 64
9.4 SYSTEM OPTIONS. .. ttttteeeeeeiuttetteeeeeesauseteteeesesaunrbe e e teeesaauanbeseeeeeseaaassebeeeeeeesannsnseeeeeeesaannseneeeeesanannraneeeeens 65
10 1Y] 68
L0.1 THEEDL AP ettt ettt ettt ettt ettt e sttt e e sttt e e s abte e e s abaeeeenbeee s abaeeesabaeeeeabaeeseasbaessabbaeesnnbaeesnanns 68
10.1.1 API to Manipulate the Diameter HEAAETcccueeeeceeeeeeciieeeecieeesieeessteaeesteaaesiaeaessssenanns 68
10.1.2 AP/ to Manipulate the DiGMETEr AVPS........oueeeeeeeeeceieeeseieeeeeieeeeteaessstaaestaaessssaaessseaeessseaennns 72
10.1.3 APl to Manipulate the Diameter GroUPEd AVPScoeeeeeeeceeeeeeeeeeseeeescteeeseteaessiseaaessseaenns 76
10.2 DIAMETER TRANSACTION STATEFUL APISeeieiiiieeiiitee ettt sire e sttt e s et e seen e st e s essre e e semnnee s sanneesesmrenesennne 78
10.2.1 INEEINAI VAEIADIES ...ttt ettt ettt e it st e e e st s e st eeesaaeee s 78
10.2.2 Diameter Transaction CONteXt VAriQDIEScooeouveeeeiiiiieiiieeeeiiee ettt eseee e e ssiee e esieee s 78
10.3 READ DCA APP CONFIGURATION DATA ...ceiiiiiiiiiiittee e ettt e e e ettt e e e e e st ee et e e e e e s eanebeeeeeaesannnreeeeaeeaaann 79
104 ROUTING AP ..eeeeeeeeeee ettt ettt e e e ettt et e e e s e ettt et e e e s e aaus b e bt e e e e e e s anbaeteeaeeesanssbbeeaeeesaannnreeeeeeeaanann 80

4 of 96 DCA Programmer's Guide

T1O.5 DEBUGGING APl .ceeiiiieieeeeeeitiiie e e e e e eeeteee e e e et ettt e e e e e e s eeasba e seeessessasannseeesessssnnnsaessssstsnnnesessssssnannsesesssssnnnns 81

10.6 CUSTOM MEAL AP ..ottt ettt ettt e ettt e st e e s s bt e s e st et e seabaeeesabaeesenbeeesanseaeesabseeesanteeesannns 82
10.6.1 COUNTEE TEIMPIALE APl ...ttt ettt e et e e ettt e e ettt e e e saeaesttaaaessstesenansesaeansenann 82
10.6.2 Lo L= =30 Lo L (=SS 84
10.6.3 L1 K Lol =T 1 1) o [-SSR 86
10.6.4 EVENTE TEMPIALE ...ttt ettt e ste e et e st e e esteasneenas 89
1O A U 1B 1 AN o IRt 90
10.7.1 The Prototype of Queries and QUErY RESUILScocueemueeeiiiiieeeiieseestesees e 90
10.7.1.1 SPECfYiNG the QUUETY ..cooueieeiciiie ettt e e et e e et e e e e ba e e s abeeesbbeeesabaaeeansaeeeabeeessseaennsaeeans 90
10.7.1.2 Retrieving the QUEIY RESUIT......cccuiiiiiiicciiie ettt e e e e stte e s tb e e e sbaeessabeeeeabeeessaeassnsaeeans 92
10.7.2 THE UDR API FUNCLIONS ...eeveesiieeeiieesieesie sttt st ettt ste st siteesate e sataesataesataesasaesaseesaseesasaenasens 92

Al [N) 1 T T TP 96

DCA Programmer's Guide 5 of 96

List of Figures

Figure 1: DCA Activation- Deactivation LIfECYCIE.......c.cciiiiiiiiiiii e 10
Figure 2 DCA FrameWOIK IMENUuuiiiiiiie e ittt e e e e s sttt e e e e e e s s e e e e e e e s s s nnataeeeeaesssnnntnnneeeeeeeesanns 11
FIGUrE 3 DCA MEASUIEIMENTS. ...eiiiee it i iiiieiie et e e e se sttt e e e e e e s st teeeeeaeessaastsaaeeraaesssassnntaeeeeaesssassnsaneeeeesssanns 11
LT T | R 1O N 1 = PR 11
Figure 5: DCA APPICAtION MENU.......cc.uiiiiiiiie e it e et e e e e e e s s e e e e e e e s s staba e e e e e e s s snnteneeeeeeeessanns 12
Figure 6: Create a New ApPlICAtiON VEISIONcocuuiiiiiiiiiieiiie ettt 15
Figure 7: New Application VErsion Createdoooiuiiieiiiiiie it 15
Figure 8: Create @ NEeW DAt@hASEc..eiiiiiiiiiiiiiiie ettt e e s 16
Figure 9: Provision Table "BIACKLIST"oouiiiiiiiiie ettt 17
Figure 10: Insert a new data row to the "BlackList” table ..., 17
Figure 11: Provision DCA DB TabIES.......uuiiiiiiiiciiiiiec e e e e e e e st e e e e e e snnrarn e e e e e e e e nnns 18
Figure 12 The "Blacklist" DCA App Development ENVIFONMENTc.uvvveeeeeiiiiiiiiiieee s ceieieeeee e e e 18
Figure 13 "BlackIiSt” Perl COUEooiuiiiiiiii ettt e e e e e e e e st e e e e e e e snntaaaeeeaeeeeaanns 19
Figure 14 Event Handler Subroutine Name Configurationcocciuieireeees i e e e e 19
Figure 15 Development ENVIironmMeNt BUONSoiiiiiiiiiiiiiiieee et e e e et e e e e e e s stnran e e e e e e enns 21
Figure 16: Trial MP ASSIQNIMENT.........uuuutitiiutureinrutererererererererereereree—ere—a———.—.—e—e—ererararererererernrernrnrnrnrnnnnns 22
Figure 17 Transitions from Development to Production Statecoccuveveiiiiiieiniieee e 24
Figure 18 Creating a NeW DCA APP VEISIONcoiiuiiiiiiiiiiee ittt ettt ettt et e s e e s nnnees 25
Figure 19: Assignment of the Version t0 @ DA-MPc..ooiiiiiiiiiii e 26
Figure 20: “COUNtULR” Call FIOWcoiiiiiiiiiiiiie ettt 35
Figure 21: “COUNtULR” Perl COEcciuiiiiiiiiiii ittt st 38
Figure 22: FIOW CONTIOl CRAIT........uuiiiiiiiiie ettt ettt e e e e e s nbb e e e s nnnreeas 39
Figure 23 TestRate Differentiationuuuuuiuiuieiiieieiiieiie . 42
Figure 24 The "Rate” DCA APP COU . ..uuiuiuiiiiiuiuiuiuiuieternteterereaerarererererarererererarererararerararerararerararnrnrnrnnn 43
Figure 25 Filter the DCAIRALE KPISuuuiuiiiiiiiiiiiiieiiieieieiniereieiererererererereerererererer.———. 44
Figure 26 Display TESIRALE KPl..........uuuiiiiiiiiiiiiiiiiiiieiieeeere e rararererererarersrsrnrnrnrnnnnns 44
Figure 27 Filter the DCA:RALe MEASUIEMENTS........uuuurururuiriuruiuiuiernrnrernrernrnrnrnrerernrnrer————————————————. 45
Figure 28 Display the TesStRate MeEaSUIEMENTS..........uuuuuiuruiiiiieiiieieieierereierereerer———————————————————. 45
Figure 29 TestRate Alarm HiSTOIYouuiiiiiiiiii e e e 46
FIGUIE 30: INO SCIEENS ...eiiiiiiiie ittt ettt ettt e s bttt e s bbbt e e s bbbt e e s bbbt e e s anbee e e e enbbeeesnnnreeas 48
Figure 31: NO CONfIgUIation SCIEEM.........iii ittt sttt e e e eb e e aeneeeas 48
Figure 32 The Custom MEAL VIEW SCIEEMcciiuiiiiiiiiiie ettt ettt e e 49
Figure 33 The Counter Template Configuration SCrEENccoiiuiiiiiiiiii e 49
Figure 34 The Basic Template Configuration SCrEEN.............uuuuuuuururuimieinieieieieiererniere———————. 50
Figure 35 The Rate Template Configuration SCrEENuuuuuuuiuuriuieiiiiieiereierererernrer————————— 51
Figure 36 The Event Template Configuration SCrEENuuuueiuiuiiiuiiiuinieiiiiiernieiernre———————. 52
[Lo (U ST N (@ B 1= T aT=T = L @ o) 1[0 1 52
Figure 38: NO Trial MPS ASSIGNIMENTuuuutiiuiuiiiiiuieieierereeererererereererererere—e e rararararerararararnrsrnrnrnnn 53
[STo [UTg=IRCTe B N[@ AN o] o] {ox= 11 o1 0 IK @0 o1 i o] 54
Figure 40: NO Create New DeVvelOpmMENt SCIEENc.oiuuiii ittt 54
Figure 41: NO Copy to NeW DeVEIOPMENT........coiiiiiiiiiiiiie ettt 55
FIGUIE 42: INO EXPOIT ...eeeeieeiiteie ettt ettt ettt ettt e skttt e e skt e e s bbbt e e skt e e e e s nbe e e e s bbbeeesannneeas 56
Figure 43: NO IMPOrt BUSINESS LOGICeeeiiiiiiiiieiiiiie ettt ettt sttt e e as 56
Figure 44: NO Import Configuration DALAcocuueiiiiiiiiieiiiie et 57
Figure 45: NO TableS VIEW SCIEENuuiiiiiiiiie ittt ettt e e nbae e e aeneeeas 58
[Lo (U SR G N (@ T 1= o] (=R T ToY =T o S Yol (== o 59
Figure 47: Provision Table DUITON ... 60
Figure 48: NO Provision Table VIEW SCIrEENeiiiiiiiiiiiiiie et e e e e 61
Figure 49: NO Provision Table INSErt SCIrEEMeii it e e e e e 61
FIGUIE 50: SO SCIEENS.ieeeieiiie ettt ettt et e oot e bbbttt e e e e e s e a bbbt e et e ae e e sanbabbeeeaaessaannbbbeeeaaaaaaanns 62
Figure 51: SO Application CONLIOl SCIEENciiiiiiiiiiiiiie ettt e e 63
Figure 52: SO Tables VIEW SCre€n (EMPLY)coiiiuiiiieiiiiee ittt st e s e e sebaee e sneeeeas 64
Figure 53: System Options for the "Unavailable" Operation Status..........cccoccuveieiiiieieiniieienieee e, 65
Figure 54: System Options for the Exhausted DRL RESOUICES.........ccoiuiiiiiiiiiieiiiiiee e 66
Figure 55: System Options for the RUN-TIME EITOFc..eoiiiiiiiiiiiiiiie e 66
Figure 56: System Options for the Realm and FQDNccoiiiiiiiiiiiiiiee e 66
Figure 57: System Options for the Application INVOCALIONcoiiiiiiiiiiiiii e 67

6 of 96 DCA Programmer's Guide

List of Tables

Table 1: NO/SO GUI AIffErENCESveiieiiiiie ettt et et e e e e snbae e e e nneee
Table 2: NO GUI tables and configuration data accessibility..........ccccceeviiiiiiiiiee e,
Table 3: SO GUI tables and Configuration data accessibilityccccccevviiiiiiiie e,

DCA Programmer's Guide 7 of 96

1 Introduction

Diameter Custom Applications (DCA) is a framework that enables a significant reduction of the
coding — testing — deployment — maintenance cycle in the development of Diameter applications.

The present document is intended to developers of DCA Apps. It describes how DCA Apps can be
created, how their business logic and configuration data can be provisioned, how their lifecycle from
development to production can be managed, as well as the various APIs available.

Following the DCA Framework and DCA Apps activation (chapter 2), the document is organized
around three DCA Apps examples: "Blacklist" (chapter 3), "CountULR" (chapter 6) and "Rate"
(chapter 8), which demonstrate the basic features of the DCA Framework. A number of additional
chapters, interleaved with the chapters describing the three DCA Apps provide a gradual insight into
essential capabilities of the DCA framework, like the DCA App lifecycle management (chapter 4),
statefull DCA Apps development mechanisms (chapter 5) and tools for monitoring the execution of
DCA Apps (chapter 7).

Chapter 9 provides a complete GUI reference.
The various APIs available are described in chapter 10.

1.1 References

[1] DCA Framework and Application Activation and Deactivation
[2] DCA Development Environment
[3] DSR Software Installation and Configuration Procedure

1.2 Glossary

This section lists terms and acronyms specific to this document.
Acronym Description
API Application Programming Interface
ART Application Routing Table
AVP Attribute Value Pair (in context of Diameter protocol)
ComAgent Communication Agent
DA-MP Diameter Agent Message Processor
DAI DSR Application Infrastructure
DAL Diameter Application Layer
DBCA Database Change Agent
DCA Diameter Custom Applications (framework)
DRL Diameter Routing Layer
DSR Diameter Signaling Router
EDL Encode-Decode Library
UDR Unified Data Repository
JSON Java Script Object Notation
MEAL Measurement, Event and Alarm
MO Managed Object
NOAM Network Operations Administration and Maintenance
OAM Operations, Administration & Maintenance
OID Object Identifier (SNMP)
Perl “Practical Extraction and Reporting Language” — a scripting

language

PRT Peer Routing Table
SNMP Simple Network Management Protocol
SOAM Site Operations Administration and Maintenance

8 of 96 DCA Programmer's Guide

| TTR

| Trace Transaction Record (in context of IDIH)

1.3 Terminology

Development
Environment

Acronym Description

A-Level NOAM —level

Asynchronous | Symbol in the Development Environment that represents a code

Call Symbol | statement that calls an asynchronous function provided by the
DCA Perl API. The code statement occurs within a preceding
Execution Block. The symbol displays the name of an
asynchronous function that is invoked.

B-Level SOAM- level

DCE Web application where a custom Diameter application developer

can edit, save, check syntax, compile the application code for a
Diameter Custom Application and generate an Interactive Flow
Control Chart from the application code.

Execution Symbol in the Development Environment that corresponds to an

Block Symbol | application subroutine where the name of the symbol is also the
name of the subroutine.

Internal A storage mechanism that allows persistence during a Diameter

Variable transaction lifetime.

Start Symbol | Symbol in the Development Environment that marks the start of
execution for the application.

Termination Symbol in the Development Environment that represents an end

Symbol point of the application execution.

DCA Programmer's Guide

9 of 96

2 DCA Activation and Deactivation

Activation and deactivation are standard procedures that enable DSR applications in general and DCA
Apps in particular to be “installed” and “uninstalled” on a network.

2.1 DCA Activation

In order to start developing a new DCA App, the following two steps need to be performed:

= Activation of the DCA framework on the NO. See Procedure 5 in [1] for the instructions.
This step needs to be performed only once for a given network.

= Activation of the new DCA App on the NO. See Procedure 6 in [1] for the instructions.
This step has to be performed once per DCA App (similar to native DSR applications). Note
however that only a limited number of DCA Apps (currently 5) can be simultaneously
activated. Therefore, old DCA Apps may need to be deactivated in order to make room to
new DCA Apps.

Figure 1 provides an overview of the activation-deactivation lifecycle.

Activate DCA Activate DCA
Framework Application

As many :
instances of this |
process as many |

DCA apps 1™~ _

Activated, not yet
provisioned DCA App(no
versions, operational state
,Unavailable")

are activated in | . Create New ’///
Y N
the network ! 4 Version, Import v .
_—— (Business Logic) Create New Version,

Copy From Existing
Version, Import,

|

|

Activated and :
Export, Make Trial, |
|

|

|

provisioned DCA
App (1+ versions in
»Development”,
LTrial”, ,,Production”,
LArchived” states)

Make Production,
Make Development,
Delete

Deactivate DCA
Framework

2.1.1 DCA Framework Activation

When the DCA framework is initialized, the DCA Framework folder with the Configuration file
becomes visible in the left side menu (Figure 2).

Deactivate DCA
Application

Figu_re 1: DCA Activation- Deactivation Lifecycle

B £ Main Menu

B Administration

i Configuration

B Alarms & Events
i Security Log

i Status & Manage
B Measurements

B Communication Agent
i Diameter Common
B Diameter

i RADIUS

&=

Configuration

a
]
B
8
B
=

10 of 96 DCA Programmer's Guide

Figure 2 DCA Framework Menu

All the measurements (Figure 3) and KPIs (Figure 4) associated with the DCA Framework become
visible as well.

Main Menu: Measurements -> Report

Filter = Info - Tasks -

Filter

SEEEE I Network Element - |Z| I Server Group - |Z| Reset |
JETIE I DCA Framework Exception |Z| I -- Interval -- |Z| Reset |

-~ Group --

Column Filter: mi l— -
ComaAgent Exception Reset |

| ComAgent Performance

Time Range: o bamerork et] IT=] kot [3an |o1 |00 00 Reset
DCA Framework Performance
il IDIH
OAM.ALARM
OAM.SYSTEM

Server Exception

Figure 3 DCA Measurements

Main Menu: Status & Manage -> KPIs @r

Tue May 03 06:37:40 2016 |
Filter ~| Tasks =

Entire-Network Gremlin-DAMP-1 Gremlin-DAMP-2 Gremlin-DAMP-3 Gremlin-DAMP-4 Gremlin-NO-A Gremlin-NO-B Gremlin-801-A Gremlin-801-B Gremlin-S02-A

ComAgent DCA Framework Server

Name NMax Min Median Average Sum Description

Ingress Message 0.00 0.00 0.00 0.00 0.00 Average Ingress Message Rate (messages per second) of Diameter messages

Rate received by the DCA Application

Runtime Errors Rate 0.00 0.00 0.00 0.00 0.00 lz:zr;t‘;{umlme Error Rate (runtime errors per second during the last sampling
Completed 0.00 0.00 0.00 000 0.00 Diameter transactions that a DCA App successfully relays

Transactions

Transactions Discard Allows the operator to determine how many transactions a DCA app relay terminates by
Request WEy £Ey B3 WEy LEy discarding the request (by with the Ci Transactions).

Figure 4. DCA KPlIs

2.1.2 DCA App Activation

When the new DCA App is activated, the DCA App subfolder with the name provided by the user
during the activation procedure becomes visible in the left side menu (Figure 5). The DCA App
subfolder includes the screens for enabling the business logic and provisioning configuration data.
The DCA App becomes visible across DSR (ART, maintenance screen, etc.).

DCA Programmer's Guide 11 of 96

B £ Main Menu
g1 i Administration
g1 @ Configuration

Figure 5: DCA Application Menu

2.1.3 Post-Activation DCA App State

Following the activation procedure, the DCA App is in the disabled state. While in disabled state,
Diameter traffic will not be delivered to the DCA App. First, the DCA App must be enabled from the
SO Main Menu: Diameter->Maintenance-> Applications. Note that on this screen the DCA App is
identified by the "short name" configured by the user during the DCA App activation procedure.

Independently from the enabled/disabled state of the DCA App, at this stage no version of the DCA
App has been provisioned yet. As a result, there is no version in “Production” and “Trial” state. As long
as no “Production” or “Trial” version is available for a DA-MP to run, the DCA App‘s operational
status will be “unavailable”(see Main Menu: Diameter->Maintenance—> Applications, on the SO).

The behavior of a DCA App while in operational state “unavailable” (provided that the DCA App has
been enabled) is configurable on the SO from the Main Menu:DCA Framework-><DCA App
Name>->System Options (see section 9.4); possible options are dropping the Diameter request,
forwarding the Diameter request or returning a Diameter answer with a configurable error code.

From this point on the user can provision the configuration and business logic for the DCA App.

2.2 DCA Deactivation

The deactivation procedures enable a DCA App and respectively the DCA framework to be removed
from a given network.

2.21 DCA Application De-Activation

The deactivation of a DCA App will not be allowed as long as versions of the respective DCA App are
still in “Production” and/or a “Trial” state (see chapter 4).

Following deactivation, the DCA app‘s GUI folder under ,,DCA Framework® menu item will disappear.
The DCA App will be deregistered from the ART, its KPIs and measurements will not be displayed and
respectively reported any longer.

12 of 96 DCA Programmer's Guide

2.2.2 DCA Framework De-Activation

DCA framework deactivation will not be allowed as long as at least one DCA App is activated in the
network.

Following deactivation, the DCA framework GUI folder will disappear from the left-hand GUI menu.

DCA Programmer's Guide 13 of 96

3 DCA App Provisioning — The “Blacklist” DCA App

This section is a learning by doing guide to provisioning the configuration data and business logic for
a simple DCA App.

3.1 The ,,Blacklist“ DCA App

The “Blacklist” DCA App checks the Origin-Host AVP of incoming Diameter requests and verifies
whether it is blacklisted or not. In case the Origin-Host is blacklisted, the Diameter request will be
dropped, otherwise the Diameter request will be forwarded unchanged.

3.2 Prerequisites

The DCA Framework must have been previously activated as described in [1]. Also, a DCA App with
the name “Blacklist” shall be activated as described in [1].

The “Blacklist” DCA App has to be enabled on all the DA-MPs in the network from the SO Main
Menu: Diameter->Maintenance-> Applications.

An ART rule shall be added that enables Diameter messages to be delivered to the “Blacklist” DCA
App.
3.3 The Process

The following step must be followed in order to provision the “Blacklist” DCA App:

Step 1: Configure the general options and behavior of the "Blacklist* DCA App;

Step 2: Create a new development version of the “Blacklist” DCA App;

Step 3: Define the structure of tables to store the “Blacklist” configuration data;

Step 4: Provision the “Blacklist” configuration data;

Step 5: Provision the “Blacklist” business logic — essentially a Perl script;

Step 6: Render the Flow Control Chart based on the Perl script. Save and perform syntax checks;

Step 7: Test the “Blacklist” DCA App: configure the Trial DA-MPs and promote “Blacklist” to Trial
state;

Step 8: Compile “Blacklist”, promote “Blacklist” to Production state.

3.3.1 Step 1: Configure the DCA App's General Options and Behavior

At this stage there is no version available for the “Blacklist” DCA App. As a result, the DCA App will
be in the operational state “Unavailable”. No traffic is forwarded to the “Blacklist” DCA App and for
outside observers the DCA App behaves as specified in the SO screen Main Menu: DCA
Framework-><DCA App Name>->System Options, Application unavailable configuration
section (see also 9.4).

The Run-time error configuration section of the same screen defines the behavior of the DCA App
in case a runtime error occurs during the execution of the event handlers.

Finally, the DCA App programmer must ensure that the names specified on the NO screen Main
Menu: DCA Framework-><DCA App Name>->General Options (see section 9.2.3) for the
Diameter request and answer event handlers (Perl subroutines) are consistently used in the Perl script.
For "Blacklist" in particular, “Perl Subroutine for Diameter Answer” shall be left empty because there
is no event handler defined to process the Diameter answers.

14 of 96 DCA Programmer's Guide

3.3.2 Step 2: Create New Development Application Version

Go to the Main Menu: DCA Framework-=><DCA App Name>->Application Control screen on
the NO and click “Create New Development” (see Figure 6). The “Create New Development”
screen will be displayed. Specify a name for the newly created “Blacklist” version and optionally
provide comments (e.g. author name, brief description of the business logic, etc.). Figure 7 shows the
newly created version.

Main Menu: DCA Framework -> Diameter Security Application -> Application Control

Wed May 27 06:36:19 2020 ED

Filter «
Version Name Status Comments Creation Time Production Time Flowchart Checksum
Blacklist Development 2020-May-27 06:36:18 EDT

. . DCA Based Diameter Security . En.
Version1 Trial Application Version 1 2020-Apr-29 01:50:10 EDT 2020-May-14 02:50:15 EDT da59a97844a649e0abbeb27cc1584444
i) Import:
Config Tables and Data Development Environment Create New Development
Business Logic A Level Config Data
Copy to New Development Export:
Delete Business Logic A Level Config Data Both

Make Development Make Trial Make Production

Figure 6: Create a New Application Version

Version Name Status Comments Creation Time Production Time Flowchart Checksum

il

| BlackList | Development | | 2020-May-27 06:33:22 EDT |
DCA Based Diameter Security

Version1 Trial Application Version 1 2020-Apr-28 01:50:10 EDT 2020-May-14 02:50:15 EDT da59a97844a649e0abbeb27cc158
) . Import:
Config Tables and Data Development Environment Create New Development
Business Logic A Level Config Data
Copy to New Development Export:
Delete Business Logic A Level Config Data Both

Make Development Make Trial Make Production
Figure 7: New Application Version Created

3.3.3 Step 3: Define the configuration data structure

Select the newly created development application version on the “Application Control” screen and
click “Config Tables and Data”. The “Tables” screen (Figure 8) will open. Click the “Insert” button
on the “Tables” screen and create a new configuration table for provisioning the blacklist. The
“Blacklist” DCA App configuration table contains only one field: OriginHost, which is of type
Diameterldentity, see Figure 8).

DCA Programmer's Guide 15 of 96

Main Menu: DCA Framework -> Test DCA Application -> Application Control -> Blacklist -> Tables -> [Insert]

Adding a new table
Fleld Vaiue

Table Name |BlackList ¥

Desaription
Single Row
oNo
i
Level 2
Table Fields

FieldName [OriginHost [
Description
Unique

Mandatory

Data Type Diameteridentity ~ *

Default Value

Remove

Description
Unique name of the Table.
{Default = nfa; Range = A 32-character string
are nain atleast one alpha and must not start with a digit]

Optional Description.

[Default = /a. Range = A 255 charadler string]
Indicates if the table must have one single row.
[Default=Unchecked Range= Checked, Unchecked]

Configuration level of the table (NO or SO).
[Default=NO. Range=NO, SO}

Unique name of the Table Field

[Default = /a; Range = A 32-character siring. Valid characters are aiphanumeric and underscore. Must contain at least one aipha and must not start with a digit]
Optional descripion.

[Default = n/a Range = A 255 character string)

Indicates if the table field must be unique

[Detault=Unchecked Range=Checked, Unchecked)

Indicates f the table field must be mandatory.

[Default=Unchecked. Range=Checked, Unchecked]

DataType

[Detault=n/a. Range= Integer. Float, UTF8String.OctetString, IP Address, DiameterURI,Diameteridentit, Enumerated, Boolean]

« Integer. Unsigned64/Signedss

« Float [*Inumber{ numberKe/E{+/-Inumber]. for example 12.3 or 1.23e+1

« UTF8String

« OctetString: hexadecimal value prefixed with Ox

« IP Address: IPv4 (decimal numbers separated by a period) AIPVG (RFC4291, section 22;form 1 and 2 are supported)
« DiameterURL “aaa." FODN [port] [ransport] { protocol J"aaas:i FQDN [port]{ transport [protocol |, see RFC6733
« Diameteridentity: FODN or Reaim.see RFC6733

« Enumerated: Comma separated ist of values, which can be separate ftems (3.b.c) of in form of : (a:1,5:2.¢3).

« Boolean: truefaise

Default Value.
[Default=n/a. Range= FQDN or Realm, see RFC6733]

Ok | | Apply| | cancel

Figure 8: Create a New Database

Note: In this example the configuration table is defined at the NO level. That means the configuration
table will be replicated to all the DA-MPs in the network.

Alternatively, a configuration table may be defined at the SO level. That means, while its structure is
defined across the entire NO, its content will be replicated only to the DA-MPs in each individual SO.
In this way distinct SOs may use different configuration data (see 9.3.5).

3.3.4 Step 4: Provision the Configuration Data

Once the structure of the “Blacklist” table is defined, the table will show up in the “Tables” screen.
Select it and click “Provision Table” button. The “Provision Table View” screen will open (Figure
9). Click the “Insert” on the “Provision Table” View screen and insert all the blacklisted Origin-
Hosts to the table one by one (Figure 10).

16 of 96

DCA Programmer's Guide

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList ->Provision Table

Table: BlackList

OriginHost

Edit = Delete Delete All Back

Figure 9: Provision Table "BlackList"

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList -> Provision Table ->[Insert]

Adding a new entry
Table: BlackList

Field Value Description

OriginHost

Ok Apply Cancel

Figure 10: Insert a new data row to the "BlackList" table

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList -> Provision Table

Table: BlackList

OriginHost

mme.test.com
mme2.test.com
mme3.test.com
mme4 test.com

mmeb5.test.com

Insert | | Edit | Delete | Delete All | | Back

DCA Programmer's Guide 17 of 96

Figure 11: Provision DCA DB Tables

3.3.5 Step 5: Provision the Business Logic

Go back to the “Application Control” screen, select the application version and click the
“Development Environment” button.

In the development environment the user can edit, save, check syntax and compile the DCA App's
Perl code, which defines the business logic that the DCA App implements. Additionally, an
interactive Flow Control Chart is rendered based the DCA App's Perl script. The Flow Control Chart
provides an overview of the control flow within the DCA App and is particularly useful in following
the asynchronous calls and indicating the terminating actions (forward, drop or return answer).

See [2] for more details on Development Environment.
The development environment of the “Blacklist” DCA App is illustrated in Figure 12.

VErsion atam

ORACLE pca Development Environment | DCA Test Application, BlackList]

100%
Cl> A lviQ| q File v Edit v ExecBlocks » Fit Resize

sub process_request {
my $param = shift;
my $msg = diameter::Param: :message($param) ;

Start request

die "Missing Diameter message” unless defined {$diameterMsg);
my SoriginHost = diameter::Message::getAvpValue($msg, "Origin-Host™):
die "Missing Origin-Host" unless defined{$originHost);

o
v

e

if (isBlacklisted ($originHost)) {
doa:-action() - :dropl) 7
process_request %
sub isBlacklisted {
my soriginHost = shift;
B my $blacklist = $dca::appConfig{"BlackList"};
my 51 = 0;
while ($1i <= $¢{$blacklist})
= isBlacklisted drop :

return 1 if $blacklist-»[$i]{"OriginHoss"} eq soriginHoss;

O Fitt;
1

return 0;

<
1]

Start answer

v

Figure 12 The "Blacklist" DCA App Development Environment

First, the DCA App programmer has to write in the right-hand panel the Perl code illustrated in Figure
13. The left-hand panel containing the flowchart will be empty until the flowchart will be rendered in
Step 6.

sub process request ({
my Sparam = shift;
my Smsg = diameter::Param::message (Sparam) ;
die "Missing Diameter message" unless defined (S$msg);
my SoriginHost = diameter::Message::getAvpValue (Smsg, "Origin-Host");
die "Missing Origin-Host" unless defined($originHost) ;
if (isBlacklisted (SoriginHost)) {
dca::action::drop();
} else {
dca::action::forward() ;

sub isBlacklisted {
my $originHost = shift;
my $blacklist = S$dca::appConfig{"BlackList"};
my $i = 0;
while ($i <= $#{Sblacklist}) {
return 1 if S$blacklist->[$i]{"OriginHost"} eq S$originHost;

18 of 96 DCA Programmer's Guide

Si++;
}

return 0;

Figure 13 "Blacklist" Perl Code

The Perl script (see Figure 13) makes use of the getavpvalue function to read the value of an AVP.
The getavpvalue function is part of the EDL API, which is described in section 10.1.2. It also uses
the drop and forward functions to discard and respectively forward the Diameter request. The drop
function is part of the basic routing API, which is described in section 10.4.

3.3.5.1 Where is the Perl script being executed?

First, let’s eliminate any possible confusion: even though the Perl script is edited via the NO GUI, the
Perl script is replicated to and eventually executed on the DA-MPs. There is no possibility to make
the Perl script process traffic other than running it on the DA-MPs.

3.3.5.2 How do the Event Handlers get invoked?

Let’s observe that the business logic of a DCA App consists of a collection of event handlers, which
are invoked when a Diameter message is delivered to the respective DCA App. A DCA App may
therefore define one event handler for Diameter requests and one event handler for Diameter answers.
Subsequent sections will introduce another category of event handlers, related to asynchronous
database queries, but let’s stick to the “Blacklist” DCA App for now. “Blacklist” defines only one
event handler: process request. Unlike isBlacklisted, which is a standard Perl subroutine
invoked from process request, process_request itself is not explicitly invoked from
anywhere in the Perl script. The event handlers are explicitly invoked by the Perl running
environment of the DCA framework. Their names are configured in the NO Main Menu->DCA
Framework—>< Application Name>->General Options screen and by default these names are
process request and process answer. These names may be changed, but one needs to make
sure that the configured event handler names are consistent with the names used in the Perl script.
Also, the event handler names shall be left empty if there is no corresponding event handler defined in
the Perl script (see Figure 14).

Main Menu: DCA Framework ->Test DCA Application -> General Options

DCA Application General Options

Field Value Description

The name of the Perl subroutine to be invoked when a Diameter request is received
Perl Subroutine for Diameter Request process_request & [Default = process_request. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The name of the Perl subroutine to be invoked when a Diameter answer is received.
Perl Subroutine for Diameter Answer [Default = process_answer. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The TTL of the application state data stored in the U-SBR by the DCA App, in seconds.

SEETL 120 [Default = 120]

‘Applﬂ | Cancel‘

Figure 14 Event Handler Subroutine Name Configuration

3.3.5.3 How does the DCA App configuration data get accessed?

The configuration data of a DCA App is accessible to the Perl script through the sdca: :appConfig
variable, which is a complex variable representing a hash of arrays of hashes. One has to dereference
it with exactly the same table names and field names specified when the structure of the configuration
tables has been defined in step 3.3.3:

Sdca::appConfig{“<table name>"}->[<record number>]{“<field name>"}

DCA Programmer's Guide 19 of 96

in our case:

Sdca::appConfig{“BlackList”}->[<record number>] {“OriginHost”}

3.3.5.4 What is the ,main part“ good for?

“Blacklist” has an empty “main part”. The “main part” of a Perl script is where the Perl interpreter
starts executing instructions. In DCA the main part is executed only once following the successfully
compilation of the script.

The “main part” is typically used to perform whatever initializations are necessary (like for instance
Custom MEAL objects, as we will describe later on).

Another task that fits into the “main part” is DCA App configuration data post-processing. We have
seen in section 3.3.5.3 that the “Blacklist” configuration data is accessible to the business logic (Perl
script) as an array. “Blacklist” simply loops through the array when looking for each Origin-Host, but
a more performance—aware version would certainly convert the array into a more performant data
structure, like for instance a hash table keyed by the Origin-Host values.

Other DCA apps may even need to use multiple keys (hence multiple hash tables) or compound keys;
the “main part” is the right place to perform this kind of structural optimizations on the DCA App
configuration data.

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax

After editing the script, while in the Development state, the following actions are possible (see Figure
15):

o Render Chart (to generate the flowchart from the Perl code);
o Render Code (to generate a Perl code skeleton from the flowchart);
e Save (to save the Perl code and the flowchart);

o Check Syntax (to check syntax of Perl script).

20 of 96 DCA Programmer's Guide

o,
E <> A v a a '

1

Render Chart
/fE Render Code
_{Save

" il W = W= = o =W B B ==

Check Syntax

"= Compile

- izBlacklisted

I= C

Figure 15 Development Environment Buttons

The "Render Chart" action generates a flowchart based on the Perl code. Note that the flowchart has a
Perl subroutine granularity and not a Perl instruction granularity. The flowchart's main purposes are:
(i) to describe how the callback subroutines are linked to the event handlers (Diameter message
handlers or other callback subroutines) that registers them and (ii) to indicate the terminating actions
(drop, forward or return answer).

The flowchart will not illustrate on which condition a Perl subroutine is invoked (i.e. if conditions) or
how many times a Perl subroutine is invoked (i.e. loop conditions). Also, the "Render Chart" action
shall be explicitly triggered by clicking the corresponding button after each modification of the Perl
script.

The approach pursued by this ("Blacklist™) and subsequent DCA App examples in this document
("CountULR" and "Rate") is based on the idea that a DCA App programmer will first provision the
Perl code and then render the flowchart. The "Render Code" action allows a somewhat opposite
approach, by first drawing a flowchart and then generating a Perl script skeleton based on it.

The “Save” button allows the flowchart and Perl code to be saved, while the DCA App version is in
Development or Trial state.

The “Check Syntax” button becomes enabled once the "Save" action has been completed, while the
DCA App version is in Development or Trial state. It performs a syntax check on the Perl code and
displays the errors if the syntax check fails.

3.3.7 Step 7: Test the DCA App Version

Having the configuration data and business logic provisioned, it is now time to test the “Blacklist”
DCA App.

A DCA App version is tested by promoting it to the Trial state, which will automatically result in
running it on the dedicated Trial DA-MPs.

DCA Programmer's Guide 21 of 96

The first step is therefore to configure the Trial DA-MPs, which can be done from the “Trial MPs
Assignment” screen (see Figure 16 and section 9.2.4).

The Trial DA-MPs assignment is configured per DCA App, that is, it needs not be repeated for each
DCA App version.

Note also that our network contains only one DA-MP, which will be also a Trial DA-MP. However,
in a real life deployment there would typically be a few Trial DA-MPs and a number of non-Trial
DA-MPs.

Main Menu: DCA Framework -> Test DCA Application -> Trial MPs assignment

Trial MP assignment

RDUD3-MP1

|Apply| | Cancel ‘

Figure 16: Trial MP Assignment

Next, on the “Application Control” screen, promote the DCA App version from Development to Trial
state by selecting it and clicking on the “Make Trial” button.

While in Trial state the DCA App version can be: modified, saved, have the syntax checked and, in
addition to the Development state, it can also be compiled (by clicking the "Compile" button, see
Figure 15), as further described in chapter 4. During each new cycle starting with the first Perl code
modification and lasting until the next successful compilation (with an arbitrarily number of
modifications, save and syntax check actions taking place during this time), the Trial DA-MPs will
execute the previously successfully compiled Perl script of the respective DCA App version.

If successfully compiled, the “Blacklist” DCA App on the Trial DA-MP will switch into the
operational state Available (see the SO Main Menu: Diameter->Maintenance-> Applications
screen). On the non-Trial DA-MPs the DCA App operational state will remain Unavailable because
there is no DCA App version in Production state at this moment.

3.3.8 Step 8: Promote the DCA App Version to Production State

A successfully compiled Trial DCA App version can be promoted to the Production state. For this
purpose, on the “Application Control” screen, the DCA App version shall be selected and the “Make
Production” button clicked.

At this stage the only DCA App version available so far is in Production state. All non-Trial DA-MPs
will start running it and on these DA-MPs the DCA App operational state will become Available.
Because there is no DCA App version in the Trial state, the Trial DA-MPs will run the Production
version as well.

Please note that our network is a very particular case that contains one single DA-MP, which is
configured as a Trial DA-MP. This means that the Production version will be executed on this only
DA-MP if and only if no Trial version exists. As soon as a (new) Development version will be
promoted to the Trial state, the Trial DA-MP will stop executing the Production version and will start
executing the (new) Trial version.

While in Production state, the business logic of the DCA App version cannot be changed anymore.
It’s only the configuration data that can be updated.

22 of 96 DCA Programmer's Guide

We have achieved our initial objective of running the “Blacklist” DCA App in our network. From this
point on a number of alternatives are possible:

o Demote the DCA App version from Production state back to Development to fix bugs, re- test
and promote back to Production state;

o Copy the DCA App version into a new version with the purpose to improve its business logic
(in terms of efficiency, functionality or both) and eventually promote the newer version to
Production state;

e Export the DCA App version from the current network and import it onto another network;

We are touching on the DCA App lifecycle management topic, which will be described in more detail
in the next chapter.

DCA Programmer's Guide 23 of 96

4 DCA Application Lifecycle

The DCA Application Lifecycle enables the DCA App programmer to manage the lifecycle of a DCA
App.

So far we have developed one single DCA App version, we tested it and promoted to the Production
state. The state transitions are illustrated in Figure 17.

1.
2.
Import Flowchart/Script Edit: Flowchart/Script,
& Config Schema, Config Schema,
Create New Version Config Data
Import: Config Data
Archived Development
3.
Promote to Trial
4.

6. Edit: Flowchart/Script,
Edit/Import Config Schema,
Config Data Config Data

Y Import: Config Data
Production - Trial
5b.

Promote to Production

Figure 17 Transitions from Development to Production State

In a real life deployment a DCA App may need to be continuously enhanced both in terms of
efficiency as well as features. A typical approach would be to “clone” the DCA App version currently
in Production state to a new version in Development state, work on the new version (while the old
version is processing the Diameter traffic), test the new version and eventually replace the older
version in Production state with the newer one. This process is illustrated by the transition path 7 - 3
- 5b - 9in Figure 18.

Archived
Development

9.
Current 7. 3
Production Copy toa New Promote to Trial
version is Development i i i
. - —___| IfaTrial version already exists, an
automatically Version error message will be displayed.

Archived when a
new version is
promoted to
Production.
An info message

The user has to pull back the
existing Trial version to
Development state, before another
Development version can be
promoted to Trial

will be displayed

L\,

Production Trial

A

Sh.
Promote to Production

24 of 96 DCA Programmer's Guide

Figure 18 Creating a New DCA App Version

The DCA App Lifecycle management is done via the Main Menu: DCA Framework-><DCA App
Name>->Application Control screen.

Each DCA app version can be in one of the following states:

o Development (initial state)

There are zero or more Development versions in the system.

Development version is not executed on any MP.

Configuration schema (databases), configuration data, flowchart may be updated.
A new version in Development state is created in the system when:

o A “Create New Development” button is clicked, see 9.2.5. In this case, the version
will have an empty flowchart, empty configuration schema and empty
configuration data.

o Importing the business logic (w/ or w/o configuration data), see 0. In this case the
flowchart and the configuration schema (databases) will be copied from the
imported version. Optionally, configuration data may be imported along with the
business logic as well.

o Copying a new Development version from an existing version in the system, see 0.
In this case the business logic as well as the configuration data of the selected
version will be copied into the new version.

There are zero or one Trial versions in the system.
Trial version is executed on the DA-MPs assigned to run the Trial version

If no Trial version exists, then the Trial MPs will run the Production version (see Figure
19).

Configuration schema (databases), configuration data, flowchart may be updated.

e Production

There are zero or one Production version in the system.

When no Production version exists in the system, the operational state of the DCA
application on MPs supposed to run the Production version will be set to

“unavailable”(Main Menu: Diameter->Maintenance->Applications). This may
happen if the Production version is rolled back to the Development state or deleted.

Is executed:
o) On all the DA-MPs, if no Trial version exists, or

o On all the DA-MPs except the DA-MPs assigned to run the Trial version, if a Trial
version exists (see Figure 19).

Configuration schema (databases) & Flowchart are read-only.

Configuration data may be updated.

e Archived

There are zero or more Archived versions in the system.

DCA Programmer's Guide 25 of 96

- Archived versions are the application versions that have previously been in the

Production state. They serve as backups for the purpose of bringing the system back to a
previous known state with minimum service interruption.

- Archived version is not executed on any MP.

- Configuration schema (databases), Configuration Data and Flowchart are read-only, but

can be exported and copied into a new version.

MP decides which
version to run

Trial
Version Exists
?

Prod

Version Exists Run Trial version
?
N
Run Production
version
Operational state is

,unavailable”

Figure 19: Assignment of the Version to a DA-MP

The following transitions are possible for a given DCA App version:

Development - Trial (only if syntax was successfully checked and no other version is in Trial
state)

Trial = Production (only if the code/flow control chart was successfully compiled and no other
version is in Production state)

Production = Archived (automatic transition when a new version is promoted to Production)
Trial > Development

Production = Development (the operational state of the DCA App becomes Unavailable)
Archived - Development

Archived - Trial

Archived = Production

26 of 96 DCA Programmer's Guide

5 Developing Statefull DCA Apps

The “Blacklist” DCA App introduced in chapter 3 was a stateless Diameter application because it was
processing each Diameter message individually without maintaining any state between a Diameter
request and its corresponding answer (Diameter transaction state) or across Diameter transactions (e.g
Diameter session state) or across Diameter sessions (e.g. user state).

DCA Apps may however need to store state:

o Diameter transaction state — for instance collect some information from the Diameter request
and use that information when processing the Diameter answer.
This task can be addressed in two ways:

1. Using the Diameter transaction context variables APl documented in section 10.2.2.

2. Developers familiar with the Internal Variables from the Mediation feature may use
Internal Variables for this purpose, as described in section 10.2.1. However, Internal
Variables involve a configuration overhead and therefore unless there is a strong
argument in favor of using them (e.g. they need to be set or read from Mediation
rules) the Diameter transaction context variables, being a purely programming
interface, are preferable

e Diameter session or user state — for instance collect information across multiple Diameter
transactions in the same session or user information across multiple Diameter sessions.
This task can be addressed using the Universal Session Binding Repository (UDR) and is
described in section 10.7.

DCA Programmer's Guide 27 of 96

6 A Statefull DCA App Using the UDR DB

In chapter 3 we have developed a stateless DCA App. Chapter 5 introduces the mechanisms available
in DCA to develop statefull DCA Apps.

This chapter describes the additional configuration steps that need to be performed and introduces the
APl available to develop a statefull DCA App that uses the UDR (Unified Data Repository). The
UDR provides a generic interface to the DSR, which implements a scalable, distributed and persistent
database infrastructure, which DCA Apps as well as other Oracle applications may use.

6.1 The ,,CountULR*“ DCA App

The “CountULR” DCA App maintains a per-user count of ULR messages and deletes it when a CLR
message from the respective user is received. The user is identified based on the content of the User-
Name AVP in the incoming Diameter requests.

6.2 Prerequisites

The DCA Framework must have been previously activated as described in [1]. Also, a DCA App with
the name “CountULR” shall be activated as described in [1].

The “CountULR” DCA App has to be enabled on all the DA-MPs in the network from the SO Main
Menu: Diameter->Maintenance—>Applications.

An ART rule shall be added that enables ULR and CLR Diameter requests to be delivered to the
“CountULR” DCA App.

6.3 The Process
The following steps must be followed in order to provision the “CountULR” DCA App:

Business Logic and Configuration Data UDR DB Configuration
Provisioning

Step 1: Configure the general options and behavior Step A: Configure UDR DBs (as required by the
of the "CountULR" DCA App DCA App business logic);

Step 2: Create a new development version of the
“CountULR” DCA App;

Step 3: Define the structure of tables to store the
“CountULR” configuration data;

Step 4: Provision the “CountULR” configuration
data;

Step 5: Provision the “CountULR” business logic —
essentially a Perl script;

Step 6: Render the Flow Control Chart based on the
Perl script. Save and perform syntax checks;

Step 7: Test the “CountULR” DCA App: configure the Trial DA-MPs and promote “CountULR” to Trial
state;

Step 8: Compile “CountULR”, promote “CountULR” to Production state;

Steps 1 to 8 are similar to those described in chapter 3.

28 of 96 DCA Programmer's Guide

Steps A and B are required in order to create UDR DB and allow the “CountULR” DCA App to
interact with it. UDR DB configuration is independent from the DCA App configuration, except that a
relative ordering must be followed:

e Step A may be executed in any order relative to steps 1 and 8.

6.3.1 Step 1: Configure the DCA App's Global Options and Behavior

In addition to the considerations discussed in section 3.3.1, for DCA Apps that use UDR, the
following configuration options may need to be adjusted:

e On the NO screen Main Menu: DCA Framework-><DCA App Name>->General Options
(see section 9.2.3):

U "Read-Only UDR Access as Guest", which may be used to control the access of the DCA
App to UDR DBs owned by other DCA Apps. This option is not relevant to "CountULR"
because "CountULR" will exclusively use the UDR DB owned by itself (see section Error! R
eference source not found.)

e Itis recommended the state data size (consisting of the size of the lookup key and respectively
the size of the state data itself) of any new DCA App to be kept below the default values
configured on the NO Main Menu: DCA Framework-> Configuration screen (see section
9.2.1). If, for good reasons, a DCA App requires a larger lookup key or more data to store, then
these limits shall be increased.

Note that these limits apply globally to all active DCA Apps. As a result, decreasing these value
may result in existing DCA Apps having their UDR queries rejected with a
dca::udr::ResultCode: :MaxStateSize error, and is therefore not recommended.

6.3.2 Step 2: Create a New Development Version

See section 3.3.2.

6.3.3 Step A: Configure the UDR DBs

6.3.3.1 Configure UDR DB as Remote server
Note: Comagent Configuration with UDR DB will be NOAM Level Configuration.

6.3.3.1.1 ComAgent Configuration on DSR

For Comagent configuration go to Communication agent TAB on Active DSR NO GUI and
configure UDB DB Server IMI IP as remote server.
Note:
If DSR and UDR deployment are in same network use UDR IMI IP as Comagent Remote
Server Configuration.
If DSR and UDR deployment are in different network use UDR XSI IP as Comagent Remote
Server configuration.
For this, add new XSI Interface on both DSR and UDR side for Comagent Communication.
Make sure new added XSI interface are Desktop routable and accessible from both side.
Do not use DSR signaling Interface (XSI Interface) for comagent communication.

e Remote Server Configuration :

DCA Programmer's Guide 29 of 96

Configure UDR DB as Remote Server.

["ETH B L [TMCommunication Agent -> Configuration -> Remote Servers|

Fri Apr 24 02:34:00 2020 EDT

Table Description: Remote Servers Table

Remote Server Name Remote Server IP Address{es) ;i':;"e Server | ocal server Groups Preferred IP
UDROO 10.75.236.108 Server dsrSignaling DAMP_951343b7_SG ComAgent Network Preference
UDRO1 10.75.236.129 Server dsrSignaling_DAMP_951343b7_SG ComAgent Network Preference

Figure Remote Server Configuration on DSR NO Server

e Connection Group configuration :
Add previously configured Remote Server to STBDbSvc Connection Group.

Main Menu: Communication Agent -> Configuration -> Connection Groups

Filter* -

Table Description: Connection Groups Table

Connection Group Server
STPSvcGroup -1 2 Servers
UDROO
UDRO1
UDRSvcGroup [+] O Servers

Figure Connection group Configuration on DSR NO Server

Note: Restart the MPs Server to make the Comagent service /connection up
e Steps to Restart the MPS Server :

- Go to Active DSR NOAM status & Manage section, select the MP server and
restart the MP server with click on restart button.

Main Menu: SEITTER- Y ENE -1

Thu May 21 00:40:3

Filterr ~

Server Hostname Network Element Appl State Alm DB e Proc
DSRdca-DNOOO DSRdca DNET_NE Enabled Norm Norm Norm Norm
DSRdca-DNOO1 DSRdoa_DNET_NE Enabled Norm Norm Norm Morm
DSRdca-so-DIP0O DSRdca_so_DSIG_NE Enabled Norm Norm Norm Norm
DSRdca-s0-DMPOO DSRdca_so DSIG_NE Enabled wWarn Norm Norm Norm
DSRdca-sa-DMPO1 DSRdca_so_DSIG_NE Enabled NSRS Norm Norm Marm
DSRdca-so-DS000 DSRdca_so_DSIG_NE Enabled Warn Norm Norm Norm
DSRdca-so-DS001 DSRdca_so_DSIG_NE Enabled warn Norm Norm Morm

Report

Figure Active NOAM Status and Manage screen

30 of 96 DCA Programmer's Guide

6.3.3.1.2 Comagent Configuration on UDR

For Comagent configuration go to Communication agent TAB on UDR NO GUI and configure all
the DSR MP IMI IP as client.

Note: Please refer section #ComAgent Configuration on DSR Note for configuring the Interface
IP as client.

e Remote Server Configuration :

Configure DSR MPs IMI IP as Client.

Main Menu: Communication Agent -> Configuration -> Remote Servers

Fri Apr 24 02:51:09 2020 EDT

Table Description: Remote Servers Table

Remote Server Name

Remote Server IP Address(es) :Iirg:te Setysy Local Server Groups Preferred IP
DSR_MPO0OO 10.75.236.110 Client udr_UDRNOAM_951343b7_SG ComAgent Network Preference
DSR_MP01 10.75.236.131 Client udr_UDRNOAM_951343b7_SG ComAgent Network Preference
vSTPmp1 10.75.219.70 Client

udr_UDRNOAM_951343b7_SG ComAgent Network Preference

Note: Reboot the Active UDR NOAM Server to make the Comagent service /connection up.
e Steps to Restart the MPs Server :

- Goto Active UDR NOAM status & Manage section, select the Active NOAM
server and Reboot the Active NOAM server with click on reboot button.

Main Menu: Status & Manage -> Server

Thu May 21 01:39:26 202

Server Hostname Network Element

Appl State Alm DB gfa'zﬁs”ing Proc

iDSRdcasoUDROO iDSRdcaso UDRNE "Enabled | EE o | Nom INom

DSRdca-so-UDRO1 DSRdca_so_UDR_NE Enabled IERIE Norm Norm Norm

Stop Restart Reboot NTP Sync Report
6.3.3.1.3 Comagent Connection Status Validation
e Comagent Connection status check on DSR NO Server :
For Connection, status check go to Communication agent Maintenance TAB on DSR NO

GUL.

DCA Programmer's Guide 31 of 96

Main Menu: Communication Agent -> Maintenance -> Connection Status
Fri Apr 24 03:23:02 2020 EL

Main Menu: Communication Agent -> Maintenance -> HA Services Status
Fri Apr 2¢

Overall UDR-HAS-UDR-App

Table Description: HA Services Status Table

HA Resource User Status HA Resource Provider Status

Alarms Registered Active Multiple

Resource Total
SR Available Degraded Unavailable = R Pyt
s Critical Major Minor S = ctive

UDR-HAS-UDR-App 2 - 0 0 0 0 0

0 0 No

¢ Routed Service status check on DSR NO Server :
For routed service, status check go to Communication agent Maintenance TAB on DSR NO

GUL.
Main Menu: Communication Agent -> Maintenance -> Routed Services Status
Fri Apr 24

Overall DRADbSvc STPDbSvc

Table Description: Routed Services Status Table

User Provider
Routed Service Name Connection Groups
Total MP Available Degraded Unavailable Total MPs
Total Available Degraded Unavailable
0 0 0 0 0 0

DRADbSvc 0

STPDbSvc 1 - 0 0 0 0 0

Figure Routed Service status on DSR NOAM Server

0 0

o HA Service status check on DSR NO Server :
For HA Service status check go to Communication agent Maintenance TAB on DSR NO GUI.

¢ Comagent Connection status check on UDR NO Server :

For Connection, status check go to Communication agent Maintenance TAB on UDR NO GUI.

Figure HA Service Status Check on NOAM Server

32 of 96 DCA Programmer's Guide

DCA Programmer's Guide

Main Menu: Communication Agent -> Maintenance -> Connection Status

Fri Apr 24 05:13
Filter* -
Server Name Automatic Connections Configured Connections
UDRNOAMO00-951343b7 3 of 3 InService
! UDRNOAMO1-851343b7 - | 3 of 3 InService
L | i
OO
Peer Server Connection Admin q
Name Peer Server IP-Address Status Connection State Connection Type Date Last Updated
DSR_MP00O 10.75.236.110 InService Enabled Configured 2020-Apr-22 07:38:47:893 EDT
DSR_MPO1 10.75.236.131 InService Enabled Configured 2020-Apr-09 06:05:42:387 EDT
vSTPmp1 10.75.219.70 InService Enabled Configured

2020-Apr-23 06:04:45:494 EDT

¢ Routed Service status check on UDR NO Server :

For routed service, status check go to Communication agent Maintenance TAB on UDR NO GUI.

Main Menu: Communication Agent -> Maintenance -> Routed Services Status

Fri Apr 24 05:14:57 2

Overall | UDR-RS-Sh-App STPDbSvc

Table Description: Routed Services Status Table

User

Provider
Routed Service Name Connection Groups
Total MP Available Degraded Unavailable Total MPs
Total Available Degraded Unavailable
STPDbSve 0

Figure Routed Service Status check on UDR NO Server

UDR-RS-Sh-App 2

HA Service status check on UDR NO Server :
For HA Service status check go to Communication agent Maintenance TAB on UDR NO GUI.

33 0of 96

Main Menu: Communication Agent -> Maintenance -> HA Services Status

Fri Apr 24
Overall UDR-HAS-UDR-App
Table Description: HA Services Status Table
HA Resource User Status HA Resource Provider Status
Resource Alarms : : :
;oRtaI Available Degraded Unavailable g;glslered gatlve .I:‘Iutl_tlple
& Critical Major Minor & S CUYY
UDR-HAS-UDR-App 0 0 0 0 0 0 0 1 1 No

Figure Routed Service status check on UDR NO Server

6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application

Login to Active NOAM Server through putty session and run this loader
(enableSecurityApp) with following steps:

e Gotothis path “usr/TKLC/udr/prod/maint/loaders/upgrade”

o Execute the “enableSecurityApp” script.

¢ Reboot the both UDR NOAM server.

6.3.3.3 Audit Time Configuration on Active UDR NOAM

By Default this configuration will disable (unchecked) e.g. no record will be clean up on
UDR server.
e if you want to clean old record on UDR ,we need to configure as
e “Cleanup Inactive Security App Subscriber Enabled” is checked (enable) and
“Security App SDO Audit Interval” is set value as “10” => all records will be
cleared after 10 sec.

Main Menu: UDR -> Configuration -> UDRBE Options

Fri Apr 24 06:07:18 2

The number of seconds after which a periodic notification retry attempt for an Application Server that i:
Delivery Retry Period When Unavailable 300 unavailable will be triggered.
DEFAULT = 300; RANGE = 1-3600 seconds

The maximum number of subscriptions per subscriber. The oldest subscription is deleted to make roor
Maximum Subscriptions per Subscriber 10 when a new subscription is added.
DEFAULT = 10; RANGE = 1-1000

The amount of time (in seconds) allowed between a transaction being committed and it becoming
durable. If Transaction Durability Timeout lapse, DURABILITY_TIMEOUT response is sent to the
originating client. The associated request should be resent to ensure that the request was committed.
DEFAULT = 5; RANGE = 2-3600 seconds

If checked, PNR(s) will be generated for a subscriber with an active subscription based on all related
Generate PNR based on User Identity O user identities except for which an update was received.
DEFAULT = UNCHECKED

The time in seconds for which PNR generation is delayed.
DEFAULT = 0; RANGE = 0-10 seconds

Transaction Durability Timeout 5

Delay PNR Generation 0

Whether or not to automatically delete an Security Appsubscriber after a subscription is inactive for a
HCIeanup Inactive Security App Subscriber Enabled [] E period that exceeds the inactivity timeout.
DEFAULT = UNCHECKED

The minimum number of seconds between starts of an Security App audit pass of the subscribers tabl
If an audit pass takes longer than this time to complete the audit, the next audit pass will start without
additional delay.

DEFAULT = 600; RANGE = 1-3600 seconds

Security App SDO Audit Interval 10

Apply Cancel

Figure Configuration of Audit Time on UDR

34 of 96 DCA Programmer's Guide

6.3.4 Step 3: Define the Configuration Data Schema
“CountULR” does not use any DCA App configuration data.

6.3.5 Step 4: Provision the Configuration Data
“CountULR” does not use any DCA App configuration data.

6.3.6 Step 5: Provision the DCA App Business Logic
The “CountULR” DCA App implements the following business logic:

e When receiving a ULR message, extract the user name from the User-Name AVP and check
if a state has been created for the respective user:

o If the user name is not found, create a state data.
o If the user name already exists, read the existing state.

e When receiving a CLR message, extract the user name from the User-Name AVP and delete
the state corresponding to the respective user, if it exists.

Error! Reference source not found. illustrates a typical call flow. “CountULR” uses two UDR API ¢
alls: createOrRead, BulkDelete . The UDR API is described in section 10.7.

First ULR of ULR Record created in DB
message createOrRead API
Success
ULR
ULA
ULA Record exist in DB,
Subsequent ULR createOrRead API | Return record with
ULR Success() Success
ULR
ULA
ULA
CLR
BulkDelete API Record deleted with key
Success CLR
CLA CLA

Figure 20: “CountULR” Call Flow
The Perl code is illustrated in Error! Reference source not found..

use constant{
key types for our app - only NAI is currently used,
the others are for exemplification
IMSI => O,
SESSION => 1,
NAI => 2,

DCA Programmer's Guide 35 of 96

IPv4 => 3,
command codes for S6 commands
ULR_CMD => 316,
CLR_CMD => 317,
i

this function is called when receiving a diameter request
message
sub process request({
session state to be stored on the udr

the session state stores:

- no of requests for this user-name

- no of success replies for this user-name

- no of error replies for this user-name
my Sudr state =

{

#
#
#
#

requests => 1 # only requests are currently counted
#ok replies => 0,
#err replies => 0

}i

diameter message is the first parameter
my $param = shift;

only one key type for this app: NAI

my S$key type = NAI;

get the diameter message object
my $msg = diameter::Param::message (Sparam) ;
if(!defined (Smsqg)) {

die "Bad diameter message parameter.";

}

try to get the the diameter command code from the diameter message
my $cmd = diameter::Message: :commandCode ($Smsqg) ;
if (!defined (Scmd)) {

die "No command code in diameter message.";

}

get User-Name from the message
my $user = diameter::Message::getAvpValue ($msg, "User-Name") ;
if (!defined (Suser)) {
could not create S$Suser
die "Could not get the User-Name value from the message"
}
my S$xmlData = create xml State data(%udr_ state);
if (ULR_CMD == $cmd) {
process Update-Location-Request
Instantiate and send the "CreateOrRead" UDR stack event
my Sresult = dca::udr::udrInstance ("GLOBAL UDR")->createOrRead (
IMSI KEY TYPE,
dca::udr: :KeyDataType: :STRING, $imsi,
dca::udr::StateDataType: :STRING, $xmlData,
"createOrReadCb") ;
check the "synchronous" error
if (!defined (Sresult)) {
could not create the udr request
die "could not create the UDR request";
}
}
elsif (CLR_CMD == Scmd) {
process Cancel-Location-Request
instantiate and send the "Delete" UDR stack event
my Sresult = dca::udr::udrInstance ("GLOBAL UDR ")->bulkDelete (IMSI KEY TYPE,
\QuserIds ,
"deleteCb");
check the "synchronous" error
if(!defined(Sresult)) {
could not create request

36 of 96 DCA Programmer's Guide

die "could not create the UDR request";

else{
die "unknown diameter command received";

}

this function is called when receiving a diameter answer
message
sub process_answer {

}

this function is called when receiving an DeleteStateResult
answer from the UDR
sub deleteCb{

my Sudr code = dca::udr::result()->code();

if (!defined(Sudr code)) {
could not get the result code of the UDR answer
die "did not get the result code of UDR answer";

}

if (dca::udr::ResultCode:: SubscriberNotFound== Sudr code) {
die "could not find a record with the given key on the UDR";
}
elsif(dca::udr::ResultCode: :Success != $udr_code){
die "UDR error: Sudr code";
}
}

this function is called when receiving an CreateOrReadStateResult
answer from the UDR

sub createOrReadCb

{

my $udr_code = dca::udr::result ()->code () ;
my $udr_state = dca::udr::result ()->data();

diameter message is the first parameter
my $param = shift;

only one key type for this app: NAI

my S$key type = NAI;

get the diameter message object
my S$msg = diameter::Param::message (Sparam) ;

if (!defined (Smsqg)) {
die "Bad diameter message parameter.";

}

get User-Name from the message
my $user = diameter::Message::getAvpValue ($msg, "User-Name") ;
if (!defined(Suser)) {
could not create S$user
die "Could not get the User-Name value from the message"

}

if (!defined (Sudr code)) {
Raise critical alarm ExecutionFailed with error details, Mark a
message as not vulnerable
raise alarm(ScmType, REQUEST MSG, dca::meal::Major,
&UDR_INVALID_RESULT, StransData->[IMSI]);
perform error action($cmType, UDR QUERY ERROR, S$transData->[CMD CODE]) ;
}

if (!defined (Sudr state)) {

DCA Programmer's Guide 37 of 96

could not get the udr state
die "did not get the udr state in the UDR answer";
}

exec nxt CM for reqg and exit($msg, ++Spriority, S$transData);

Figure 21: “CountULR” Perl Code

6.3.6.1 What does a ‘“state” consist of?

A state is essentially a mapping between a Key and a Value. What exactly the Key and Value are is
completely under the DCA App’s control. The UDR does not attach any semantics to a DCA App
state. In “CountULR” the Key is the user name extracted from the User-Name AVP and the Value is
basically a counter that counts the total number of ULR messages.

Even though “CountULR” uses a single Key (of type NAI), DCA Apps may, in general, use multiple
Keys (IMSI, MSISDN, IP addresses, Diameter Session-1d, etc.).

A DCA App may distinguish between the different Keys by declaring their Key Types. The Key Type
helps avoid collisions like for instance between NAI key “fred”” and IPv4 address key 66.72.65.64, or
between IP source address key 1.2.3.4 and destination IP address key 1.2.3.4.

The Value associated to a Key is the value of a Perl variable. For “CountULR” the Value is a Perl
hash table containing one key “requests” that stores an integer representing the ULR counter. Perl
complex data structures like hash tables and arrays are converted to JSON and stored in the UDR DB
as strings. When retrieved from the UDR they are converted back to the original data structure. Scalar
Perl variables, on the other hand, need not undergo a JSON conversion.

6.3.6.2 What are Asynchronous API Calls and Callbacks?

The dca: :udr: :udrInstance (“GLOBAL UDR”) 2 createOrRead,

dca::udr::udrInstance (“GLOBAL UDR ") 2update and dca: :udr: :udrInstance (“GLOBAL UDR
”)>bulkbelete API functions initiate, each of them, an UDR query. They are asynchronous
functions, in the sense that they do not wait until a response from the UDR is received. They construct
the UDR DB query and return immediately, to allow the other Diameter messages to be processed.
The query itself is sent after the event handler execution completes.

How can then the DCA App learn about the outcome of the UDR DB query it just sent? It may be
observed that all the UDR API functions can register, as the last parameter, the name of a callback
subroutine. The callback subroutine is invoked by the DCA framework when the outcome of the
corresponding UDR query is known. The outcome may be: (i) an error condition that prevented the
UDR query to even be sent, (ii) the UDR DB response itself or (iii) an error condition indicating that
no response has been received within a certain timeout interval.

6.3.6.3 How is the UDR state returned to the Perl script?

In the callback subroutine the DCA App programmer can use the dca: :udr: :result () class to
retrieve the error code and, if the query was successful, the result.

6.3.7 Step 6: Render the Flow Control Chart

Render the Flow Control Chart based on the Perl script. Save the code and check the syntax.

38 of 96 DCA Programmer's Guide

(=) wewer ivupe
[0 Resource Domains
[0 Places
[0] Place Associations =

[(1 DSCP

<

slalvalg |00

Start request

& (21 Alarms & Events o ’

[[Security Log N
[+ (O] Status & Manage

[¢] (1] Measurements

[} (2] Communication Agent

(+] (] Diameter Common o I
(&] (°] Diameter B

[&] C1RADIUS

[€YSBR

[4 Configuration
[0) SBR Databases
[7) SBR Database Res | »
[S8R Data Migratior|
Database Options |~
[4 Maintenance I

¥ SBR Database Stal
% SBR Status
77} SBR Dalabase Req
[=] 3 DCA Framework
%] Configuration
[€3 First Dca Application
%) General Options
[7) Trial MPs assignmy
[7) Application Control

@ Hel

6.3.8 Step 7: Test the DCA App Version

See 3.3.7.

process_request

("sbr}->createOrRead ("sbr)->delete

createOrReadCh deleteCb

("sbr}>concurrentUpdate

Exec Blocks v Fit Resize

m,

atures
Name the

uted by the DA-MP
when it receives = Cancel-Location-Request (CLR)

It is implemented by using the &

cwing stack events

=item CreateOrleadState

ceiving an ULR message, the pp will check whether ther
R state associsted with the User-Neme in the ULR message
it will create one

=item Cona

ntUpdateState

if there is zlready an SBR state associated with the User-Name in the incomin
ULR message, the epp will update it using Concurrentlpdate

=item DeleteState

receiving an CLR message, the app will tr
ding User-Neme value

5 delete the state data

< m B

Output

Figure 22: Flow Control Chart

6.3.9 Step 8: Promote the DCA App Version to Production

See 3.3.8.

DCA Programmer's Guide

39 of 96

7 Monitoring a DCA App

Custom MEAL general description — templates and their purpose

The monitoring of the execution of a DCA App is possible by means of the Custom MEAL feature.

The Custom MEAL feature enables a DCA App programmer to define and use measurements, KPIs
and events, on demand:

Measurements are used to count specific events or amounts, as required by the DCA App’s
business logic. Their historical values measured during specific time intervals and/or on
specific hosts are available via reports;

KPIs display real-time statistics of the measured events or amounts, like for instance average
values;

Events may be triggered automatically when the currently measured values exceed the
configured thresholds.

Alternatively, events may be triggered explicitly from the DCA App code.

The Custom MEAL feature hides most of the complexity of the underlying DSR objects that
implement the measurements, KPIs and events by defining a number of four templates, which are
designed to implement specific tasks:

The Counter template — is used to count events. The counter values are available only off-line
through the Measurement Reports;

The Rate template — is most typically used to calculate message rates. It generates KPIs,
Measurement Reports and may be used to automatically raise alarms if the configured
threshold values are exceeded;

The Basic template — is used to measure averages or number of elements in a set (e.g. to
calculate average size of AVPs, messages or number of users registering/deregistering). It
generates KPIs, Measurement Reports and may be used to automatically raise alarms if the
configured threshold values are exceeded,

The Event template — is used to explicitly raise/clear alarms or generate events from the Perl
script when specific business logic conditions are detected.

Each of the templates is available in scalar and arrayed format.

We denote by "differentiation” the process of assigning a C-MEAL template instance to a DCA App.
We denote by "un-differentiation™ the reverse process of removing a C-MEAL from a DCA App and
basically returning it to the pool of un-differentiated C-MEAL, from where it can be re-assigned to
another (or even the same) DCA App.

40 of 96 DCA Programmer's Guide

8 A DCA App Using Custom MEALs

Chapter 7 introduced the Custom MEAL (C-MEAL) templates and their applicability.

This chapter describes a simple DCA App that uses a Rate C-MEAL to monitor the rate of the
incoming Diameter requests with just two lines of Perl code.

8.1 The ,,Rate“ DCA App

The “Rate” DCA App differentiates a Rate C-MEAL, initializes it and pegs it every time a Diameter
request is received. The operator can monitor the incoming message rate in real time (KPI), check the
history of the measured value (measurement report) and get notified when the configured thresholds
are exceeded (alarm).

8.2 Prerequisites

The DCA Framework must have been previously activated as described in [1]. Also, a DCA App with
the name “Rate” shall be activated as described in [1].

The “Rate” DCA App has to be enabled on all the DA-MPs in the network from the SO Main Menu:
Diameter->Maintenance-> Applications.

An ART rule shall be added that enables Diameter requests to be delivered to the “Rate” DCA App.

8.3 The Process

The following steps must be followed in order to provision the “Rate” DCA App:

Business Logic and Configuration Data Custom MEAL Configuration
Provisioning

Step 1: Configure the general options and behavior Step I: Differentiate a scalar Rate C-MEAL
of the " Rate " DCA App

Step 2: Create a new development version of the
“Rate” DCA App;

Step 3: Define the structure of tables to store the
“Rate” configuration data;

Step 4: Provision the “Rate” configuration data;

Step 5: Provision the “Rate” business logic —
essentially a Perl script;

Step 6: Render the Flow Control Chart based on the
Perl script. Save and perform syntax checks;

Step 7: Test the “Rate” DCA App: configure the Trial DA-MPs and promote “Rate” to Trial state;

Step 8: Compile “Rate”, promote “Rate” to Production state;

Steps 1 to 8 are similar to those described in chapter 3. Step | is required in order to assign a C-MEAL
to the “Rate” DCA App, which can be then be used via the C-MEAL API, which is described in
section 10.6.

Step | may be executed in any order relative to steps 1 to 5.

DCA Programmer's Guide 41 of 96

8.3.1 Step I: Differentiate a C-MEAL

C-MEALs are differentiated from the Main Menu->DCA Framework->Rate=>Custom MEALS
screen, by clicking on the Insert button. For the “Rate” DCA App in particular, "TestRate", a scalar
rate C-MEAL, will be differentiated (see Figure 23). "TestRate" will raise an alarm when the
configured thresholds are exceeded. The threshold values represent percentages from the 100%
Threshold Value, which in our example is exactly 100.

Main Menu: DCA Framework -» Rate -> Custom MEALs

Tue Jul 12

Measurement 100% Alarm Alarm Threshold Threshold Threshold Threshold Threshold Threshold
Type

State Threshold Autoclear Throttling " - A a N .
Value Interval Intenval Min Clear Min Set Maj Clear Maj Set Crit Clear Crit Set

Name Template Type

TestRate Rate Scalar Completed 100 - - 65 70 75 en 85 an

Insert Edit Delete Pause updates

Figure 23 TestRate Differentiation

8.3.2 Step 1: Configure the DCA App's General Options and Behavior

See section 3.3.1.

8.3.3 Step 2: Create a New Development Version
See section 3.3.2

8.3.4 Step 3: Define the Configuration Data Schema
“Rate” does not need any DCA App configuration data.

8.3.5 Step 4: Provision the Configuration Data
“Rate” does not need any DCA App configuration data.

8.3.6 Step 5: Provision the DCA App Business Logic

The “Rate” DCA App implements a simple business logic that consists of pegging the Rate C-MEAL
each time a Diameter request is received.

The Perl code is illustrated in Figure 24. Note that the C-MEAL name used to initialize the Perl object
must be the same as the one configured for the C-MEAL during differentiation (“TestRate”).

my SrateObject = new dca::meal::rate("TestRate");
die "Failed to bind to the rate template" unless S$rateObject;

force compilation error if

42 of 96 DCA Programmer's Guide

rateObject initialization fails

my SeventObject = new dca::meal::event ("TestEvent");

die "Failed to bind to the event template" unless S$SeventObject
sub process request({

SrateObject->peg(); # or ‘die unless S$rateObject->peg(); to force

a runtime error if pegging fails

And that's it! Alarms will be automatically raised when the configured

=

thresholds are exceeded

"Pegging failed");

#

Alternative version to log an event when pegging fails - un-comment
eventObject initialization

#

sub process_ request({

my $err = SrateObject->peg();

#

if (! Serr){

if (! $SeventObject->isThrottled(dca::meal: :Minor)) {
Serr = $SeventObject->log(dca::meal::Minor,

#

#

#

#

Figure 24 The "Rate" DCA App Code

8.3.7 Step 6: Render the Flow Control Chart

The same process described in section 3.3.6 shall be followed.

8.3.8 Step 7: Test the DCA App Version
The same process described in 3.3.7 shall be followed.
At this stage, we can finally monitor the “Rate” DCA App in the following ways:

1. The “DCA:Rate” KPI group includes all the KPIs that belong to the “Rate” DCA App. In the
Main Menu->Status&Manage->KPIs the “DCA:Rate” group shall be included in the KPI
filter criteria (see Figure 25). As a result, the exponentially smoothened average of the ingress
rate (TestRate) is displayed in real time (see Figure 26).

The history of the measured values can be accessed from the Main
Menu->Measurements—2>Report screen. The “DCA:Rate” measurements group includes all
the measurements that belong to the “Rate” DCA App and shall be included in the filtering
criteria (see Figure 27). As a result, the history of the TestRate measurements is displayed
(see Figure 28).

An alarm with the corresponding severity is raised when the respective threshold values are exceeded.
This can be seen for instance in Figure 26. The alarm details can be accessed from Main
Menu->Alarms&Events.

2. Figure 29 illustrates the alarm history, obtained by progressively increasing the message rate
above the critical set threshold and then progressively reducing it below the minor clear
threshold.

DCA Programmer's Guide 43 of 96

Main Menu: Status & Manage -> KPls [Group: 'Server']

Tue Jul 12 08:3%:14 2016 EOT

Entire-Metwork HPCOSNG HPCOESO | HPCOSMP1 | HPCOBSER1 Y Filter Options
Mon Arrayed CPUPerCore r_l-) Go Reset
Group
Mame Value Desc E
CPU 061 % Percentage utilization of all pracessors on the DCARate -
RAM 436 % Percentage utilization of physical memulﬁt -Graups-
Swrap 0.00 % Percentage utilization of swap space onthe s ComAgent
Disk 0.21 % Percentage utilization of disk space onthe ser | DCA Framework
ShiMerm 0.03 % Fercentage utilization of shared memary onth DCARate
Uptirne 4.95 days The total amount of time{days HH:MM:55) the SBR
Sener
USBER
-Place Associations- A

Figure 25 Filter the DCA:Rate KPls

Main Menu: Status & Manage -> KPIs [Group: ‘DCA:Rate']

Tue Jul 12 08:51:03 2016 EDT

Entire-Network

O

Non Arrayed

MName Average Man Min Median Sum Desc

TestRate T8 78 781 8.1 7871 test rate kpi

|X om

The ingress rate has increased
above the major threshold set
value (70)

0 HPCOBHO (ACTIVE HETWORK 0AMEP) | Updates enabled
“ol=SEVERITV&aridfiter op=EQUAL&aridfilter val=MAIOR

Figure 26 Display TestRate KPI

44 of 96 DCA Programmer's Guide

Main Menu: Measurements -> Report (Filtered)

Tasks ~

MPSG =~ HFCOGMP1

Mon-Arraved
Filter
fimes Measurement:
2018 DCARate j Fifteen Minute j Reset
2016
2016 Scope:
2018 Metwiork Elerment j MPSG j - Resource Dormain - j - Place - j - Place Association - =

Column Filter:

Naone j Like j

Time Range:

1 Hours j Ending j 2016 Jul j 12 j o9 j oo j Reset

Go

Figure 27 Filter the DCA:Rate Measurements

Main Menu: Measurements -> Report {Filtered)

Tasks

MPSG =~ HPCOBEMPY

Hon-Arraved

Timestamp Es:ﬁsl'gm TestRatefvy TestRateCnt TestRatePeak
2016-07-12 08:00:00 EDT 100 0000000 O 0

2016-07-12 081500 EDT 100 12135344 10823 111
2016-07-12 08:30:00 EDT 100 00995580 BO5OS 120
2016-07-12 08:45:00 EDT 100 67921644 B1125 129

Figure 28 Display the TestRate measurements

DCA Programmer's Guide 45 of 96

Main Menu: Alarms & Events -> View History (Filtered)

Tue Jul 12
Event ID Timestamp Severity Product Process NE Server Type Instar
Event Text Additional Info
33388 2016-07-12 08:53:37 948 EDT CLEAR Prociatch S0O_HPCOR HPCOGMP1 DCA DCAS|
Gh_BUNTHRESHICLR Metric DCAST below minor threshold ™ Current: B3 Onset.
TestRateAlrm
More...
33388 2016-07-12 08:53:18.948 EDT MINOR Prociatch SO_HPCOR HPCOGMP1 DCA DCAS|
Gh_ABYTHRESHMWRN Metric DCAST above minorthreshold ~* Current 72 Onset....
TestRateAlrm
More...
33355 2016-07-12 08:53:18.948 EDT CLEAR Prociatch SO_HPCOR HPCOGMP1 DCA DCAS|
Gh_BUNTHRESHICLR Metric DCAST below major threshold Current: 72 Onset
TestRateAlrm
More...
33355 2016-07-12 08:51:15.948 EDT Mi.JOR Prociatch SO_HPCOE HPCOGMP1 DCA DCAS|
GN_ABYTHRESHAMRN Metric DCAS1T above major threshold #* Current: 84 Onset:
TestRateAlrm
More...
33355 2016-07-12 08:51:15.948 EDT CLEAR Prociatch SO_HPCOE HPCOGMP1 DCA DCAS|
GN_BUANTHRESHICLR Metric DCAST below critical threshald * Current: 84 Ons
TestRateAlrm -
More...
33355 2016-07-12 08:30:29.948 EDT CRITICAL Prociatch SO_HPCOE HPCOGMP1 DCA DCAS|
GH_ABYTHRESHARMN Metric DCAS1T above critical threshold ~* Current: 90 Ons:
TestRateAlrm More
ore...
33355 2016-07-12 08:29:47. 948 EDT Mi.JOR Prociatch SO_HPCOE HPCOGMP1 DCA DCAS|
1
Export Report

Figure 29 TestRate Alarm History

8.3.9 Step 8: Promote the DCA App Version to Production
The same process described in 3.3.8 shall be followed.

46 of 96

DCA Programmer's Guide

m

9 GUI Overview
9.1 NO/SO differences

Table 1: NO/SO GUI differences

NO SO

Framework Configuration Read-only
General Options Read-only
Custom MEALSs Read-only
Trial MP Assignment Read-only

New application versions are created

Existing application versions are copied

Business Logic and/or NO Config data
imported/exported

SO Config data imported/exported

Flowchart and Script Development Read-only
Application version state transitions Read-only
Defining the configuration tables (schema) Read-only

Provisioning NO Configuration Data (table content)

Provisioning SO Configuration Data (table content)

NO configuration read-only.

System Options

9.2 NO Screens

The DCA Framework left hand menu on the NO includes the following screens:

e Configuration Screen

Each activated application is represented by the separate menu folder with the given application name.
The application folder on the NO includes the following screens (“Application Control” screen
contains the buttons that lead to other DCA screens):

e Custom Meals

e General Options Screen

e Trial MPs Assignment Screen

o Application Control Screen

Create New Development Screen
Copy to New Development Screen
Import Pop-Up Window

Export Pop-Up Window

Development Environment

O 00000

Tables Screen

DCA Programmer's Guide

47 of 96

o Provision Tables Screen

[=] ‘3 DCAFramework
[z| Configuration
[=] ‘3 DCA Frame Work Application
[z| General Options
(] Trial MPs assignment
(] Application Control
[+] [Kiran Test Application
[+] (O] TestApp Number 4

Figure 30: NO Screens

9.2.1 Configuration Screen

The NO Main Menu—~> DCA Framework—-> Configuration screen allows configuring DCA
Framework parameters: “Maximum Size of Application State” and ‘“Maximum Size of the Key”. See
Figure 31.

Main Menu: DCA Framework -> Configuration

DCA Framework Configuration

Field Value Description

Maximum size of the application state (in bytes) to be stored in the UDR.

Maximum Size of Application State * 4800 .)
[Default = 256; Range = 1-64 kB.] [A value is required.]

Maximum size of the key (in bytes) used to lookup the application state stored in the UDR.

Maximum Size of the Key * 256 . i
[Default = 256; Range = 1-1024 B.] [A value is required.]

Apply Cancel

Figure 31: NO Configuration Screen
9.2.2 Custom MEALs

9.2.21 View Custom MEALs

The NO Main Menu: DCA Framework-><DCA App Name>->Custom MEALS screen
(illustrated in Figure 32) lists the Custom MEAL templates differentiated for the current DCA App. It
also enables new Custom MEAL templates to be differentiated and differentiated Custom MEAL
templates to be modified.

There are a limited number of Custom MEAL templates of each type for all the DCA Apps activated
in a network. An error will be displayed if the DCA App programmer attempts to exceed these limits.

It is not possible to modify the counter/basic/rate/event and scalar/arrayed type of a differentiated
Custom MEAL template. If the type needs to be modified, then a new Custom MEAL template shall
be created (provided the limits haven't been exceeded yet) and the old one shall be deleted.

48 of 96 DCA Programmer's Guide

Main Menu: DCA Framework -> First Dca App -> Custom MEALs

Filter ~
100% Alarm Alarm
Measurement . Threshold Threshold Threshold Threshold Threshold Threshold
Hame Template Type Type State Threshold Autoclear Throttling Min Clear Min Set Maj Clear Maj Set Crit Clear Crit Set
Value Interval Interval
WyEvent Event ~ Completed ~ 300 G0 ~ ~ ~ ~ ~ ~
Insert Edit Delete Pause updates

Figure 32 The Custom MEAL View Screen

9.2.2.2 Configure the Counter Custom MEAL Template
Figure 33 illustrates the configuration options for inserting a Counter template.

Main Menu: DCA Framework -> First Dca App -» Custom MEALs -> [Insert]

Adding a new custom measurement or event

Field Value Description

Measurement’Event name. It will be used to derive the names of
Measurement Name * Myq:nﬂ related counters, KPls, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [Avalue is required.]

Custom MEAL template type.
Counter

Ti late Ty
emplate fype [Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify ifthe Custom MEAL

Measurement Type Scalar IZ| is Scalar or Arrayed.
[Default = Scalar, Range = Scalar, Arrayed].

Ok Apply Cancel

Figure 33 The Counter Template Configuration Screen

9.2.2.3 Configure the Basic Custom MEAL Template

Figure 34 illustrates the configuration options for inserting a Basic template. The Basic template is
optionally associated with an alarm which will be automatically raised if the configured thresholds are

exceeded.

DCA Programmer's Guide 49 of 96

Main Menu: DCA Framework -> First Dca App -> Custom MEALs -> [Insert]

Adding a new custom measurement or event

Field

Measurement Name *

Template Type

Measurement Type

Value

MyBasic

Basic El

Scalar El

MyBasic Descriprtien

KPI Dy d

Generate Alarm

Alarm Description

100% Threshold Value

Alarm Minor Set Threshold

Alarm Minor Clear Threshold

Alarm Major Set Threshold

Alarm Major Clear Threshold

Alarm Critical Set Threshold

Alarm Critical Clear Threshold

Ok Apply Cancel

Alarm Description

5000

50

40

70

60

90

80

Description

MeasurementEvent name. It will be used to derive the names of
related counters, KPls, max and average measurements, alarms
[Default = emply, Range = A 32-character string]. [A value is required))

Custom MEAL template type
[Default = Rate, Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL
is Scalar or Arrayed.
[Default = Scalar; Range = Scalar, Arrayed].

KPI description text.
[Default = Empty; Range = A 255-character string].

If checked, an alarm will be created.
[Default = Checked; Range = Checked, Unchecked]

Alarm description text
[Default = Empty; Range = A 255-character string].

An absolute value that specifies

For Rate templates: the maximum events per second the Custom MEAL is expected to count (for instance the maximum messages per second).
For Basic templates: the maximum value the Custom MEAL is expected to measure (for instance the maximum number of bytes, AVPs, etc.in a
message).

The minor, major and critical threshold values are defined as percentages from this value.

[Default = Emply; Range = 1- (2*63}-1 (i.e. 9223372036254775807)]

Minor alarm setthreshold in %
[Default = Empty; Range = 2 - 96]

Minor alarm clear threshold in %
[Default = Empty; Range = 1-95]

Major alarm setthreshold in %.
[Default = Empty; Range = 4 - 98]

Major alarm clear threshold in %.
[Default = Empty; Range = 3 - 97]

Critical alarm setthreshold in %.
[Default = Empty, Range = 6 - 1001.

Critical alarm clear threshold in %.
[Default = Empty; Range = 5 - 98]

Figure 34 The Basic Template Configuration Screen

9.2.24

Figure 35 illustrates the configuration options for inserting a Rate template. The Rate template is
optionally associated with an alarm which will be automatically raised if the configured thresholds are
exceeded.

Configure the Rate Custom MEAL Template

50 of 96 DCA Programmer's Guide

Main Menu: DCA Framework -> First Dca App -> Custom MEALSs -> [Insert]

Adding a new custom measurement or event

Field Value
Measurement Name * MyRate
Template Type Rate B
Measurement Type Scalar B

. MyRate Description
KPI Description RRARER =

Generate Alarm

Alarm Description
Alarm Description B

100% Threshold Value 40000

Alarm Minor Set Threshold 50

Alarm Minor Clear Threshold 4¢

Alarm Major Set Threshold 70

Alarm Major Clear Threshold 6

4

Alarm Critical Set Threshold]

-1

Alarm Critical Clear Threshold g

S

Ok Apply Cancel

Description

Measurement/Event name. It will be used to derive the names of
related counters, KPIs, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [Avalue is required.]

Custom MEAL template type.
[Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALSs, specify if the Custom MEAL
is Scalar or Arrayed.
[Default = Scalar, Range = Scalar, Arrayed]

KPI description text.
[Default = Empty, Range = A 255-character string]

If checked, an alarm will be created.
[Default = Checked; Range = Checked, Unchecked]

Alarm description text.
[Default = Empty; Range = A 255-character string].

An absolute value that specifies:

For Rate templates: the maximum events per second the Custom MEAL is expected to count (for instance the maximum messages per second).
For Basic templates: the maximum value the Custom MEAL is expected to measure (for instance the maximum number of bytes, AVPs, etc.ina
message).

The minor, major and critical threshold values are defined as percentages from this value.

[Default = Empty; Range = 1- (2*63)-1 (i.e. 9223372036854775807)]

Minor alarm setthreshold in %.
[Default = Empty, Range = 2 - 96]

Minor alarm clear threshold in %
[Default = Empty, Range = 1- 95]

Major alarm setthreshold in %.
[Default = Empty, Range = 4 - 98]

Major alarm clear threshold in %
[Default = Empty; Range = 3 - 97]

Critical alarm set threshold in %.
[Default = Empty; Range = 6 - 100]

Critical alarm clear threshold in %
[Default = Empty; Range = 5 - 99]

Figure 35 The Rate Template Configuration Screen

9.2.2.5 Configure the Event Custom MEAL Template

Figure 36 illustrates the configuration options for inserting an Event template.

DCA Programmer's Guide

51 of 96

Main Menu: DCA Framework -> First Dca App -> Custom MEALSs -> [Insert]

Adding a new custom measurement or event
Field Value Description
Measurement/Event name. It will be used to derive the names of

Measurement Name * MyEvent related counters, KPls, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [Avalue is required]

Custom MEAL template type.
Event

Ti late T
emplate Type [Default = Rate; Range = Counter, Rate, Basic, Event]

Zlarm Description Alarm description text

Alarm Description
P [Default = Empty, Range = A 255-character string].

Time Interval in seconds after which a raised alarm is autocleared unless not explicitly
Alarm Autoclear Interval 300 cleared or re-asserted. Avalue of 0 means the alarm never autoclears.
[Default = 300; Range = 0-3600]

Time interval in seconds during which multiple events with the same event number and instance
Alarm Throttling Interval g0 are suppressedifraised. Avalue of 0 means no throttling is performed.
[Default = 60; Range = 0-300]

Ok Apply Cancel

Figure 36 The Event Template Configuration Screen

9.2.3 General Options Screen

The NO Main Menu-=>DCA Framework—> < Application Name>-> General Options screen
enables specifying the Perl Subroutines for Diameter Request and Answer, “Application State Data
TTL”, “Read Only UDR Access as Guest” and “Max. UDR Queries per Message”. See Figure 37.

Main Menu: DCA Framework -> Diameter Security Application -> General Options

Thu May 28 03:38:3

DCA Application General Options

business logics of the "guest" and "owner" DCA App are not semantically consistent. A typical
restriction in this sense would be for instance that the UDR DB records can only be deleted by |
DCA App that created them. Also note that a "guest" DCA App will use its own Application Stat
TTL setting for updating the TTL of the UDR DB records that it handles. Unexpected behavior ¢
DCA Apps or even race conditions may occur if the "guest" and "owner" DCA App have substa
different stateTTLsec settings.

[Default = Checked. Range = Checked, Unchecked].

Read Only UDR Access as Guest]

Maximum number of UDR Queries a DCA App may send per Diameter message (request or ar
Max. UDR Queries per Message * 10 Subsequent UDR queries will return an error.
[Default = 5. Range = 1 - 10] [A value is required.]

If checked, the DCA App will perform opcodes accounting.

Enable Opcodes Accountin
P 9 O [Default = Checked. Range = Checked, Unchecked].

Apply Cancel

Figure 37: NO General Options

52 of 96 DCA Programmer's Guide

9.2.4 Trial MPs Assignment Screen

The NO Main Menu—> DCA Framework—> <DCA App Name>-> Trial MPs Assignment screen
allows specifying which DA-MPs shall run the Trial version of the DCA App (see Figure 38). If there
is no Trial version available, the Trial DA-MPs will run the Production version, if there is any
available.

If a DCA App version is promoted to the Trial state but no Trial DA-MPs are currently configured
assigned, a warning message will be displayed.

Main Menu: DCA Framework -> DCA Frame Work Application -> Trial MPs assignment

Trial MP assignment

Gremlin-DAMP-1 Gremlin-DAMP-2
Gremlin-DAMP-3
Gremlin-DAMP-4

Apply Cancel

Figure 38: NO Trial MPs Assignment

9.2.5 Application Control Screen

The NO Main Menu—=>DCA Framework—> < Application Name>-> Application Control screen
(see Figure 39) allows:

e Listing all application versions configured in the system

e Inserting a new application version (via NO New Development Insert Screen)

e Copying and modifying an existing application version (via NO New Development Copy Screen)
e Exporting an application version entirely (business logic + provisioned data from the NO)

e Exporting only the NO provisioned data of an application version

e Importing a previously exported application version (business logic + NO provisioned data) (via
NO Import Pop-Up Window).

o Importing only the NO provisioned data to an existing application version (via NO Import Pop-
Up Window)

e Accessing the application version configuration tables (via NO Tables View Screen)

e Accessing business logic and flowchart of an application version (via NO Development
Environment Screen)

o Deleting an existing application version

o Changing the status of an application version (Development, Trial, Production, Archived)

DCA Programmer's Guide 53 of 96

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control

Mon Jun 13 07:07:20 2016 EDT

Eror -
Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
DCA_FW_App_v1 Archived first app 2016-May-20 10:0753 EDT 2016-Jun-09 16:44:44 EDT 800afa59e0fb0f1c1562ce3b6279cear d7caf76ebB5e062999174260bbd4e85d
DCA_FW_App_vS Development fifth app 800afa598000f1c1562¢2306279ccal
DCA_FW_App_v3 Development third app 2016-May-23 10:23:39 EDT 2016-Jun-09 16:34:10 EDT 800afa59e0fb0f1c1562ce36279cear 18607 30fe34b4aef7 1fbb3b14426c07
DCA_FW_App_v4 Development fourth app 2016-May-23 10:24:02 EDT 800afa598000f1c1562¢2306279ccal 3610c0964996210c7a26544639288628
dea_fw_app_v1 Development firstpt2 app 2016-May-23 10:57:55 EDT 800af250e0b0f1c1562ce3b6279ccaf
AA_BB_CC_v2 ‘ Development Vwirsré:und—plz o ‘ 2016-May-23 10,5835 EDT ‘ """"" ‘ 800afa50e0m0Mcl562ce3b6270ccar |+]
AA_BB_CC_v3 Development third-pt2 app 2016-May-23 11:00:01 EDT 300af25920f00f1 15622306279 ccal
DCA_FW_App_vé Development ~ fifth-pt2 app 2016-May-23 11:02:23 EDT 800afa50e0b0f1c1562ce3b6279ccaf
DCA_FW App v2 Trial second app 2016-May-23 10:20:41 EDT 2016-Jun-09 16:37:39 EDT 800afa590fb0f1c1562ce306279ccar 1520 000
RBAR_Lite Production 2016-Jun-03 13:27:40 EDT 2016-Jun-09 16:45:40 EDT ebfbd277205b83e7086fc60011d54724 be0ab3817634b3870e4b8dd6526M0953

Config Tables and Data | Development Environment | SBR DB Name Mapping S| [mport

Business Logic A Level Config Dala
Create New Development | Copy to New Development L
£ Export:
Delste Business Logic | | Alevel ConfigData Bath
Make Development | | Make Trial = Make Production h/

Figure 39: NO Application Control

9.2.6 Create New Development Screen

The NO Main Menu=>DCA Framework-><Application Name>-> Application Control-=> Create
New Development screen allows creating a new DCA App version with a given name and comments.
It is accessed by clicking “Create New Development” button on the “Application Control” screen,
see Figure 40.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -» [Create New Development]

Adding a new application version

Field Value Description
Unigue name of the Application Version.
Version Name * [Default = nia; Range = A 32-character string.
Walid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [A value is required]
Comments Optional comment
[Default = n/a. Range = A 255 character string]
Ok Apply Cancel

Figure 40: NO Create New Development Screen

Currently, there might be up to 10 application versions at a time.

9.2.7 Copy to New Development Screen

The NO Main Menu--> DCA Framework->< Application Name>-> Application Control-> Copy
to New Development screen allows copying an entire DCA App version, consisting of business logic
(Perl script, flowchart and configuration table schemas) and the NO provisioned configuration data,
into a new version. It is accessed by selecting the application version and clicking “Copy to New
Development” button on the “Application Control” screen, see Figure 41.

54 of 96 DCA Programmer's Guide

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -> [Copy to New Development]

Info =

Info

o ‘ = The version will be copied together with the business logic (tables +flowchart) and A level config data.

Unique name of the Application Version
Version Name * Testapp4vi [Default = nia; Range = A 32-character string.
Valid characters are alphanumeric and underscore. Must contain atleast one alpha and must not start with a digit] [A value is required]

Optional comment

Comments
[Default = n/a. Range = A 255 character string]

Ok Apply Cancel

Figure 41: NO Copy to New Development

When the new Application Version is copied it will become visible on the Application Control screen
displaying the user provisioned name in the "Version Name" column and comments in the
"Comments" column.

The copied Application will also include the business logic (DB tables + Perl script) and the A level
(NO level) configuration data (if any was specified).

9.2.8 Export Pop-Up Window

The exported application version is stored in the form of a JSON file.

DCA Framework GUI offers three export options:

1. Export the business logic only (that includes the defined tables, flow control chart, the script,
custom Meals, KPIs, Events associated with the application version. It does not include the
provisioned data)

2. Export the business logic and the configuration data (in addition to the business logic the
provisioned data for the tables is also exported)

3. Export the configuration data only

For the first option, select the application version and click “Export Business Logic” (becomes
enabled when the row is selected).

For the second option, select the application version and click “Export Both” (becomes enabled
when the row is selected).

For the third option, select the application version and click “Export A Level Config Data”
(becomes enabled when the row is selected). The export popup window is illustrated in Figure 42.

Main Menu: DCA Frame[o, i Test App Number 3-Testappidjson TR [

Emror - You have chosen to open:

Version Name Status | Test App Number 4-Testappdv1.json ion Time Flowchart Checksum Schema Checksum
e .] whichis: jeon File 118 bytes) [fTTTTTTTT P —— L

| Testappdv! 1 Develop!
! ! from: hitps://100.64.48 200

‘What should Firefox do with this file?

Browsze...

7 Save File

Do this automatically for files like this from now on.

Settings can be changed using the Applications tab in Firefox's Options.

DCA Programmer's Guide 55 of 96

Mon Jun 12 08

Figure 42: NO Export

When the user tries to export the business logic, there is a validation to check whether the
flowchart/script has been compiled. If not, the export will be aborted and the error will be given.

The A level (NO level) configuration data can be exported from the NO machine, but not from the
SO.

9.2.9 Import Pop-Up Window

The NO Import Pop-Up window allows specifying a JSON file from which the business logic (if
required) and the NO provisioned data shall be imported.

Note: The provisioned data imported to the existing business logic shall be appended to the existing
data rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned
rows on the “Provision Table” screen and then import the new configuration data.

DCA Framework GUI offers three import options:

1. Import the business logic only (that includes the defined tables, flow control chart, the script,
custom Meals, KPIs, Events associated with the application version. It does not include the
provisioned data import, hence the defined tables are empty after the import)

2. Import the business logic and the configuration data (in addition to the business logic the
provisioned data for the tables is also imported)

3. Import the configuration data only

For the first option, click “Import Business Logic” (always enabled) on the NO “Application

Control” screen. Leave the checkbox “Import also Config data” unchecked, see Figure 43. Select the
file.

For the second option, click “Import Business Logic” (always enabled) on the NO “Application
Control” screen. Check the checkbox “Import also Config data”. Select the file.

For the third option, select the application version and click “Import A Level Config Data”
(becomes enabled when the row is selected), see Figure 44. Select the file.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum

""

- 7
i Testapp4v1 ‘ Development | ‘ 2016-Jun-10 09:18:47 EDT |

Import business logic

File No file selected.

Import also config data:
Abort on first error.

Import | | Cancel

Figure 43: NO Import Business Logic

56 of 96 DCA Programmer's Guide

Main Menu: DCA Framework -> Test App Number 4 -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum

D P B] [S

Import config data

File: No file selected.

Abart on first error:

Import | Cancel

Figure 44: NO Import Configuration Data

During the import, validations are performed particularly in order to ensure that the format of the
DCA App configuration data to be imported is compatible with that of the target DCA App version.

As a result, a number of fatal errors may occur during the import, which will force the import to be
aborted regardless of “Abort on first error” checkbox. Such fatal errors are:

o File larger than 25MB;
o File has wrong structure or missing data;
o All the errors that happen during the business logic import;

o If the user tries to import the config data to an existing application version, but none of the
table names from the imported file matches the table names of the selected application;

o If the user tries to import the config data to an existing application version, but none of the
field names in the tables from the imported file matches the field names in the tables of the
selected application;

e Level mismatch. A -level DCA Application configuration data can be imported only on the A
level. The same applies to the B level data.

Non-fatal errors, on the other hand, let the user decide whether to abort the import or not (depending
on the value of “Abort on first error” checkbox).
9.2.10 Development Environment

Development Environment is accessed by selecting the application version and clicking the
“Development Environment” button on the Application Control screen. The DCA Development
Environment (DCA-DE) is where a custom Diameter application developer can edit, save, check
syntax, and compile the application code for a Diameter Custom Application.

See [1] for more details.

9.2.11 Tables Screen

The NO Main Menu-> DCA Framework=> < Application Name>=> Application
Control><Version Name>-> Tables View screen (see Figure 45) allows

e Listing all the config tables (NO+SO) defined for an application version

o Inserting/editing a new config table (NO or SO) for the development or trial application
version (via NO Table Insert/Edit Screen).

o Deleting an existing config table (NO or SO) for the development or trial application version

DCA Programmer's Guide 57 of 96

o Viewing an existing config table of an archived or production application version (via NO
Table View Screen).

e Accessing the Provision Table View and Insert/Edit screens (via NO Provision Table View
Screen, NO Provision Table Insert Screen and NO Provision Table Edit Screen).

“Tables View” screen is accessed by selecting the application version and clicking the “Config
Tables and Data” button on the “Application Control” screen.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control > DCA_FW_App_v2 -> Tables

Table Name Description single Row Level
table2 NO MO
Insert | Edit ew Delete | Provision Table

Figure 45: NO Tables View Screen

The “Insert”, “Edit” and “Delete” buttons are disabled on the “Tables View” screen for the archived
and production application versions.

The “View” button is enabled for the archived and production application versions if the table is
selected.

The “View” button is disabled for the development and trial application version.

The “Provision Table” button is always enabled if the NO table is selected (it is disabled for the SO
tables from the NO GUI).

Table 2 illustrates the access rights for the DCA App configuration schema and data provisioning tables.
The NO/SO DCA database tables (schema) can be created, deleted and modified from the NO GUI for
the development and trial application versions; they can be only viewed for the archived and production
application version. The NO DCA database tables can be provisioned anytime from the NO GUI. The
SO tables cannot be provisioned from the NO GUI.

Table 2: NO GUI tables and configuration data accessibility

The accessibility of level A and level B table schema and content from the NO GUI:

NO GUI
Archived Production Development, Trial

NO tables schema (level A) ro ro rw
NO tables content (level A) rw rw rw
SO tables schema (level A - shares same field as NO

ro ro rw
tables schema)
SO tables content (level B) n/a n/a n/a

ro: read-only
rw: read-write
n/a: not available

The NO Main Menu—> DCA Framework-> < Application Name>-> Application

Control-><Version Name>-> Table Insert screen (see Figure 46) allows defining a new
configuration table (NO or SO). It is accessed by clicking the “Insert” button on the “Tables View”

screen for the development and trial application versions.

58 of 96

DCA Programmer's Guide

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> AA_BB_CC_v3 -> Tables -> [Insert]

Mon Jun 13 09:32:54 201¢

Adding a new table

Field Value

Table Name *

Description

Single Row

@ NO
80

Level
Table Fields *
Field Name

Description

Unique

Mandatory

Data Type - Select - El

Remove

Ok Apply Cancel

Description

Unique name of the Table.
[Default = n/a; Range = A 32-character string.
Valid characters are alphanumeric and underscore Must contain at least one alpha and must not start with a digit] [A value is required]

Optional Description.
[Default = n/a. Range = A 255 character string]

Indicates if the table must have one single row.
[Default=Unchecked. Range= Checked, Unchecked].

Configuration level of the table (NO or SO).
[Default=NO. Range=NO, S0]

Unique name of the Table Field
[Default = n/a; Range = A 32-character string. Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

Optional description.
[Default = n/a. Range = A 255 character string].

Indicates if the table field must be unigue.
[Default=Unchecked. Range=Checked, Unchecked]
Indicates if the table field must be mandatory.
[Default=Unchecked. Range=Checked, Unchecked]

Data Type
[Default=n/a. Range= Integer, Float, UTF8String,OctetString, IP Address, DiameterURI,Diameterldentity, Enumerated, Boolean].

» Integer Unsignedf4/Signed64

+ Float [+-number[.number][e/E[+-Inumber], for example 12.3 or 1.23e+1

« UTF8String

« OctetString: hexadecimal value prefixed with 0x

« |P Address: IPv4 (decimal numbers separated by a period) /IPvE (RFC4291, section 2.2; form 1 and 2 are supported)
« DiameterURI: "aaa:" FQDN [port] [transport] [protocol J"aaas:” FQDN [port] [transport] [protocol), see RFCE733
» Diameteridentity: FQDM or Realm,see RFC6733

« Enumerated: Comma separated list of values, which can be separate items (a,b.c) orin form of : (3:1,6:2 c:3).

+ Boolean: trueffalse

Figure 46: NO Tables Insert Screen

Currently, there might be up to 10 configuration tables per application version (NO+SO).

The configuration table definition includes:

e Table Name and Description

e Number of table rows (single vs multiple up to 2000 rows)
e Table level (whether the table resides on the NO or the SO)
e Table Fields (up to 20 now)

O Field Name and Description

U Whether the field is unique

U Whether the field is mandatory

U Field Data Type

O Field Default value

The table fields can be of the following types (depending on the selected data type, ranges must be

also defined):

e Integer (Range: Min.

and Max. values)

DCA Programmer's Guide

59 of 96

o Float (Range: Min. and Max. values)
e UTF8String (Range: Max. length)

e OctetString (Range: Max. length)

e |Paddress

e DiameterURI

e Diameterldentity

e Enumerated (The values)

e Boolean

The NO Main Menu-> DCA Framework->» < Application Name>-> Application
Control-><Version Name>-> Table Edit screen allows editing the schema of an existing DCA App
configuration table (NO or SO).

The NO Main Menu—-> DCA Framework—> < Application Name>-> Application
Control=><Version Name>—> Table View (Read-only Insert/Edit) screen allows viewing a DCA
App configuration table in read-only mode. It is accessed when the table is selected and the “View”
button is clicked on the NO “Tables View” screen for the archived and production application
version.

9.2.12 Provision Tables Screen

The NO Main Menu-> DCA Framework-> < Application Name>-> Application
Control=><Version Name>-> Provision Table View screen (Figure 48) allows:

e Listing all the data rows provisioned for the NO configuration table

e Inserting a new data row to the NO configuration table (via NO Provision Table Insert
Screen)

e Editing a data row of the NO configuration table (via NO Provision Table Edit Screen)
e Deleting a data row from the NO configuration table
e Deleting all provisioned rows at once

It is accessed by selecting the table and clicking “Provision Table” button on the “Tables View”
screen, see Figure 47.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> DCA_FW_App_v2 -> Tables

Table Name Description Single Row Level
Parm parm MNO MO
e e ettt At a
| table2 1 NO MO H
L 1 1 1 1
vdTablel 210 YES S0

Insert | Edit View Delete | Provision Table

Figure 47: Provision Table button
The “Provision Table” button is disabled for the SO tables from the NO GUI, see Table 2.

60 of 96 DCA Programmer's Guide

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> DCA_FW_App_v2 -> Provision Table

Table: table2

kit int5 Ipoklipo

Insert Edit Delete Delete All ﬂ
Figure 48: NO Provision Table View Screen

Up to 2000 rows of data can be provisioned per table unless the table has only single row (the “Single
row” checkbox has been checked on the “Table Insert” screen).

The NO Main Menu—-> DCA Framework—> < Application Name>-> Application
Control=><Version Name>—> Provision Table Insert screen (see Figure 49) allows inserting a new
data row to the NO configuration table.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> DCA_FW_App_v2 -> Provision Table -> [Insert]
Tu

Adding a new entry
Table: table2

Field Value Description

kit * [Avalue is required.]
int5* [Avalue is required.]

Ipoklpo * [Avalue is required.]

Ok Apply Cancel

Figure 49: NO Provision Table Insert Screen
During the data insert, the GUI performs the following validations:
e Whether the mandatory value is present
o Whether the unique value is unique
o Whether the maximum of data rows is reached
o Whether the data inserted corresponds to the specified field data type
o \Whether the data inserted is between the specified min-max range for the field
o Whether the entered sting value is no longer than the allowed maximum for the field

o Whether the entered enumerated value is within the allowed range of enumerated values for
the field

e FEtc.

DCA Programmer's Guide 61 of 96

The NO Main Menu—> DCA Framework-> < Application Name>-> Application
Control-><Version Name>-> Provision Table Edit screen allows editing a data row of the NO
configuration table.

9.3 SO Screens

The DCA Framework left hand menu on the SO includes the following screens:
e Configuration Screen (NO screen, read-only on the SO)

Each activated application is represented by the separate menu folder with the given application name.
The application folder on the NO includes the following screens (“Application Control” screen
contains the buttons that lead to other DCA screens):

e Custom Meals (NO screen, read-only on the SO)
o General Options Screen (NO screen, read-only on the SO)
e Trial MPs Assignment Screen (NO screen, read-only on the SO)
e Application Control Screen
O Import Pop-Up Window
O Export Pop-Up Window
O Development Environment (NO screen, read-only on the SO)
a

Tables Screen (NO screen, read-only on the SO, except for “View” and “Provision Table”
button)

o Provision Tables Screen

e System Options Screen

[=] ‘3 DCAFramework
[’i"‘] Configuration
[=] ‘- First Dca Appl
[’i"‘] General Options
[Trial MPs assignment
[Application Control
[’i"‘] System Options

Figure 50: SO Screens

9.3.1 Application Control Screen

The SO Main Menu—> DCA Framework—> < Application Name>—> Application Control screen
(see Figure 51) allows:

o Listing all application versions configured in the system

e Exporting only the SO provisioned data of an application version (via SO Export Pop-Up
Window)

e Importing only the SO provisioned data to an existing application version (via SO Import
Pop-Up Window).

e Accessing the application version configuration tables (via SO Tables View Screen)

62 of 96 DCA Programmer's Guide

e Accessing the flowchart and business logic of an application version (via development
environment ,read-only)

Main Menu: DCA Framework -> First Dca Appl -> Application Control

Tue]

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checl
e e et ittt Ittt Eet ettt Rttt
+Version1 1 Trial | 1 2016-Jun-01 14:12:56 EDT | 1 c0adbb8bbcd7 a0a36d237e5d135f3685 |
i i i i i i i

P

Config Data | Development Environment | SBR DB Name Mapping Import. | B Level Config Data

Export: | B Level Config Data

Figure 51: SO Application Control Screen

9.3.2 Export Pop-Up Window

The B level (SO level) configuration data can be exported from the SO machine, but not from the NO.
To export the configuration data to a JSON file, select the application version and click “Export B
Level Config Data” (becomes enabled when the row is selected).

9.3.3 Import Pop-Up Window

The SO Import Pop-Up window allows specifying a JSON file from which the SO provisioned data
shall be imported.

Note: The provisioned data imported to the existing business logic shall be appended to the existing
data rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned
rows on the “Provision Table” screen and then import the new configuration data.

The B level (SO level) configuration data can be imported only to the SO machine.

To import the configuration data from the JSON file, select the application version and click “Import
B Level Config Data” (becomes enabled when the row is selected). Select the file.

9.3.4 Tables Screen

The SO Main Menu—-> DCA Framework-> < Application Name>—> Application
Control-><Version Name>-> Tables View screen (see Figure 52) allows:

o Listing all the config tables (NO+SO) defined for an application version
e Viewing an existing config table (via NO/SO Table View Screen)

e Accessing the Provision Table View and Insert/Edit screens (via SO Provision Table View
Screen, SO Provision Table Insert Screen and SO Provision Table Edit Screen).

DCA Programmer's Guide 63 of 96

The SO “Tables View” screen is accessed by selecting the application version and clicking “Config
Data” button on the SO “Application Control” screen.

Main Menu: DCA Framework -> First Dca Appl -> Application Control -> Version1 -> Tables

Table Name Description Single Row Level

Insert Edit View Delete Provision Table

Figure 52: SO Tables View Screen (empty)
The “Insert”, “Edit” and “Delete” buttons are disabled on the SO “Tables View” screen.
The “View” button is enabled if the table is selected.
The “Provision Table” button is always enabled if the NO/SO table is selected.

Table 3 illustrates the access rights for the DCA App configuration schema and data provisioning tables
on the SO. The NO/SO DCA App table schemas can only be viewed. The level A DCA App
configuration tables content can only be view from the SO GUI. The level B DCA App configuration
tables can be provisioned.

Table 3: SO GUI tables and Configuration data accessibility

The accessibility of level A and level B table schema and content from the SO GUI:

SO GUI
Archived Production Development, Trial

ro ro ro
NO tables schema (level A) (replicated) (replicated) (replicated)

ro ro ro
NO tables content (level A) (replicated) (replicated) (replicated)
SO tables schema (level A - shares same field ro ro ro
as NO tables schema) (replicated) (replicated) (replicated)
SO tables content (level B) rw rw rw

ro: read-only
rw: read-write
n/a: not available

The SO Main Menu-> DCA Framework=> < Application Name>=> Application
Control-><Version Name>-> Table View (Read-only Insert/Edit) screen allows viewing a
configuration table in read-only mode. It is accessed when the table is selected and the “View” button
is clicked on the SO “Tables View” screen.

9.3.5 Provision Tables Screen

The SO Main Menu-> DCA Framework=> < Application Name>=> Application
Control=><Version Name>=> Provision Table, View screen allows:

o Listing all the data rows provisioned for the SO-rooted DCA App configuration table

64 of 96 DCA Programmer's Guide

e Inserting a new data row to the SO-rooted DCA App configuration table (via SO Provision

Table Insert Screen)

o Editing a data row of the SO-rooted DCA App configuration table (via SO Provision table

Edit Screen)

o Deleting a data row from the SO-rooted DCA App configuration table.

o Deleting all provisioned rows at once

Note: The NO-rooted DCA App configuration tables, as well as the schema definitions of both the
NO-rooted and SO-rooted DCA App configuration tables are accessible on the SO only in read-only

mode.

The SO “Provision Table View” screen is accessed by selecting the table and clicking “Provision

Table” on the SO “Tables View” screen.

The SO Main Menu->» DCA Framework—-> < Application Name>-> Application
Control=><Version Name>-> Provision Table, Insert screen allows inserting a new data row to the

SO-rooted DCA App configuration table.

The SO Main Menu—> DCA Framework—> < Application Name>—> Application
Control-><Version Name>-> Provision Table, Edit screen allows editing a data row of the SO-

rooted DCA App configuration table.

9.4 System Options

“System Options” screen is present on the SO only. See Figure 53- Figure 57.

“System Options” screen enables the configuration of the DSR application parameters that are:

e Relevant to the operational status “unavailable”. These options allow to specify the behavior
in case when the application state is “unavailable” (Main Menu:
Diameter->Maintenance-> Applications). The possible behavior is:

o Continue Routing

o Use default route + specify application unavailable route list

o Send Answer with Result-Code AVP + specify Result-Code and Error Message

o Send Answer with Experimental-Result AVO + specify Result-Code, Error Message

and Vendor-Id.

A cc ion

@ Continue Routing
Default Route
Send Answer with Result-Code AVP
Send Answer with Experimental-Result AVP

Application Unavailable Route List

Application Unavailable Action

3002 UNABLE_TO_DELIVER

—

Application Unavailable Result-Code

Application Unavailable Error Message |application Unavailable

Application Unavailable Vendor-1d

Action to be taken when the application is unavailable to process messages.

Ifthe Unavailability Action is "Default Route” and the application is not available, the requests will be routed
using this Route List and Peer Routing Rules will be bypassed

The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
message is not successfully routed because of the application being unavailable. If Vendor-d is
configured, this value is encoded as Experimental-Result-Code AVP else Resuli-Code AVP

[Default = 2002; Range = 1000 - 5999]

The Error-Message AVP value to be returned in an Answer message when a message is not successfully
routed because of the application being unavailable
[Default = "Application Unavailable™, Range = 0 to 64 characters]

The Vendor-Id AVP value to be returned in an Answer message when a message is not successfully routed
because of the application being unavailable. [Default = n/a; Range = 1 - 4294967295]

Figure 53: System Options for the "Unavailable" Operation Status

e Relevant to the case when the DRL resources are exhausted. The behavior is to send an error
message with the specified Result-Code, Error Message and Vendor-Id.

DCA Programmer's Guide

65 of 96

@ The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
3004 TOO_BUSY |L| . Mmessage is not successfully routed because of internal resource being exhausted. If Vendor-Id is
I— configured, this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.
[Default = 3004; Range = 1000 - 5999]

Resource Exhaustion Result-Code

The Error-Message AVP value to be returned in an Answer message when a message is not successfully
Resource Exhaustion Error Message Application Resource Exhaust routed because of internal resource being exhausted
[Default = "Application Resource Exhausted™, Range = 0 to 64 characters]

The Viendor-ld A/P value to be returned in an Answer message when 3 message is not successfully routed
Resource Exhaustion Vendor-ld because of internal resource being exhausted
[Default = n/a; Range = 1 - 4294967295]

Figure 54: System Options for the Exhausted DRL Resources

o Relevant to the run-time error. These options allow to specify the behavior in case of a run-
time error. Runtime errors fall into two categories:

o Perl specific runtime errors — e.g. division by zero, a “die” statement, calling an
undefined (utility, not event handler) subroutine etc.,

o Runtime errors triggered by the DCA framework — e.g. invoking an event handler that
does not exist or exceeding the maximum configured number of executed opcodes.

The possible behavior is:
o Continue Routing
o Discard
o Send Answer with Result-Code AVP + specify Result-Code and Error Message

o Send Answer with Experimental-Result AVO + specify Result-Code, Error Message
and Vendor-Id.

Field Value Description
Run-time error configuration
@ Continue Routing

Discard

Send Answer with Result-Code AVP

Send Answer with Experimental-Result AVP

Run-Time Error Action Action to be taken when the DSR application experiences a run-time error.

3002 UNABLE TO DELIVER The Resuli-Code or Experimental-Result-Code value to be returned in an Answer message when a
Run-Time Error Result-Code 2 m— message is not successfully routed because ofthe application rundtime error If Vendor-I1d is configured,
l— this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.
[Default = 3002; Range = 1000 - 5999)

The Error-Message AVP value to be returned in an Answer message when a message is not successfully

Run-Time Error Message Fun-Time Error routed because of the application run-time error.

[Default = "Run-Time Error”; Range = 0 to 64 characters)

The Veendor-ld A/P value to be returned in an Answer message when a message is not successfully routed

Rune-Time Error Vendor-ld | because of the application run-time error.

[Default = n/a; Range = 1- 4294967295]
Figure 55: System Options for the Run-Time Error

¢ Realm and FQDN that are placed in Answer message generated by the DCA. These are the
values that will be placed in the Origin-Realm and Origin-Host AVPs of the Answer message
generated by DCA. If they are not configured, local node Realm and FQDN for the egress
connection will be used.

G for the DCA Answer

Value to be placed in the Origin-Realm AVP of the Answer message generated by DCA If not configured,

local node Realm for the egress connection is used.

Realm is a case-insensitive string consisting of a list of labels separated by dots, where a label may
Realm contain letters, digits, dashes (-') and underscore (_"). A label must start with a letter, digit or underscore

and must end with a letter or digit Underscores may be used only as the first character A label must be at

most 63 characters long and a Realm must be at most 255 characters long

Fully Qualified Domain Name is required to configure Realm.

[Default = nfa; Range = Avalid Realm.]

Walue to be placed in the Origin-Host AVP of the Answer message generated by DCA. If not configured, local

node FQDN for the egress connection is used.

FODN is a case-insensitive string consisting of a list of labels separated by dots, where a label may

contain letters, digits, dashes (') and underscore {"_"). Alabel must start with a letter, digit or underscore
A s T and must end with a |etter or digit. Underscores may be used only as the first character. A label must be at

most 63 characters long and a FQDM must be at most 255 characters long.

Realm is required to configure Fully Qualified Domain Name.

[Default = nfa; Range = Avalid FQDN]

Figure 56: System Options for the Realm and FQDN

e Application invocation. This option is needed to indicate if the subsequent invocation of
application on a different node in the network is allowed or not.
If unchecked, the DSR-Application-Invoked AVP will be inserted, preventing the same DSR
application on another DSR node from receiving the Diameter message.

66 of 96 DCA Programmer's Guide

Application invocation

Allow Subsequent Application Invocation

If checked, subsequent invocation of DCA Framework Application on a different node in the network is
allowed

Ifunchecked, the DSR-Application-Invoked AVP will be inserted, preventing the same DSR application on
another DSR node from receiving the Diameter message

[Default=Unchecked. Range=Checked, Unchecked].

Figure 57: System Options for the Application Invocation

DCA Programmer's Guide

67 of 96

10 APIs

This chapter documents the various APIs available to a DCA App programmer.
10.1 The EDL API

10.1.1 API to Manipulate the Diameter Header

Purpose: Retrieve the Diameter message object needed for subsequent operations on the Diameter
message header and body

Prototype:

my $msg = diameter::Param::message ($param) ;

where sparam is a default parameter provided by all the event handlers and may be retrieved with

my Sparam = shift;

Purpose: Read the Diameter version number in the Diameter header

Prototype:

my Sver = diameter::Message::version ($msqg);

where sver is undef in case of failure (e.g. wrong object passed in smsg) or the Diameter version
number if success

Purpose: Set the Diameter version number in the Diameter header

Prototype:

Serr = diameter::Message::setVersion (msg, Sver);

where serr is undef in case of failure (e.g. wrong object passed in smsg) or a non-zero value in case
of success

Purpose: Return the length (as number of bytes) of the Diameter message

Prototype:

my $len = diameter::Message::messagelLength (Smsqg) ;

where s1en is undef in case of failure (e.g. wrong object passed in smsg) or the length of the
Diameter message if success

Purpose: Read the Command Flags of the Diameter message.

Prototype:

my $cmdFlags = diameter::Message::commandFlags ($Smsqg) ;

where $cmdFlags IS undef in case of failure (e.g. wrong object passed in smsg) or the Command
Flags if success.

Purpose: Read the Request flag of the Diameter message.

68 of 96 DCA Programmer's Guide

Prototype:

my $r = diameter::Message::isRequest (Smsqg) ;

where sr is 1 if the Request flag is set, 0 if the Request flag is not set or under if error (e.g wrong
object passed in smsg).

Purpose: Read the Diameter Proxiable flag in the Diameter header.

Prototype:

my $p = diameter::Message::isProxiable ($msqg);

where sp is 1 if the Proxiable flag is set, 0 if the Proxiable flag is not set or under if error (e.g wrong
object passed in smsg).

Purpose: Set (set to 1) the Diameter Proxiable flag in the Diameter header.

Prototype:

Serr = diameter::Message::setProxiable (Smsqg) ;

where serr is undef if error (e.g wrong object passed in smsg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Proxiable flag in the Diameter header.

Prototype:

Serr = diameter::Message::clearProxiable (Smsqg) ;

where serr iS undef if error (e.g wrong object passed in smsg) or a non-zero value if success.

Purpose: Read the Diameter Error flag in the Diameter header.

Prototype:

my Se = diameter::Message::isError (Smsqg)

where se is 1 if the Error flag is set, O if the Error flag is not set or under if error (e.g wrong object
passed in smsg).

Purpose: Set (set to 1) the Diameter Error flag in the Diameter header.

Prototype:

Serr = diameter::Message::setError (Smsqg);

where serr iS undeft if error (e.g wrong object passed in smsg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Error flag in the Diameter header.

Prototype:

Serr = diameter::Message::clearError ($Smsqg);

where serr iS undef if error (e.g wrong object passed in smsg) oOr a non-zero value if success.

DCA Programmer's Guide 69 of 96

Purpose: Read the Diameter Retransmission flag in the Diameter header.

Prototype:

my $t = diameter::Message::isRetransmission ($msqg);

where st is 1 if the Retransmission flag is set, O if the Retransmission flag is not set or undef if error
(e.g wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter Retransmission flag in the Diameter header.

Prototype:

Serr = diameter::Message::setRetransmission ($Smsqg) ;

where serr is undef if error (e.g wrong object passed in smsg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Retransmission flag in the Diameter header.

Prototype:

Serr = diameter::Message::clearRetransmission ($msqg);

where serr iS undef if error (e.g wrong object passed in smsg) oOr a non-zero value if success.

Purpose: Read the Diameter 4" reserved bit of the Command Flags in the Diameter header.
Prototype:

my $r4 = diameter::Message::isReservedBit4 ($Smsqg);

where st is 1 if the 4" bit in the Command Flags flag is set, O if the bit is not set or undeft if error (e.g
wrong object passed in smsg).

Purpose: Set (set to 1) the Diameter 4" reserved bit of the Command Flags in the Diameter header.

Prototype:

Serr = diameter::Message::setReservedBit4 ($msqg) ;

where serr iS undef if error (e.g wrong object passed in smsg) oOr a non-zero value if success.

Purpose: Clear (set to 0) the Diameter 4" reserved bit of the Command Flags in the Diameter header.

Prototype:

Serr = diameter::Message::clearReservedBit4 (Smsqg) ;

where serr iS undef if error (e.g wrong object passed in smsg) or a non-zero value if success.

Purpose: Read/Set/Clear the Diameter Sth, 6" and 7" reserved bit in the Command Flags in the
Diameter header.

Prototype:

70 of 96 DCA Programmer's Guide

See three examples above where the “Bit4” suffix in the function names is accordingly
replaced by “Bit5”, “Bit6” and respectively “Bit7”.

Purpose: Read the Diameter Command Code in the Diameter header

Prototype:

my $cmd = diameter::Message: :commandCode (Smsg) ;

where scmd iS undef if error (e.g wrong object passed in smsg) or contains the Command Code if
success.

Purpose: Set the Diameter Command Code in the Diameter header

Prototype:

Serr = diameter::Message::setCommandCode (Smsg, S$cmd);

where serr is undef if error (e.g wrong object passed in smsg) or a non-zero value if success.

Purpose: Read the Diameter Application-ID in the Diameter header
Prototype:
my Sappld = diameter::Message::applicationId(Smsqg);

where $appId is unders if error (e.g wrong object passed in $msg) or contains the Application-ID if
success

Purpose: Set the Diameter Application-ID in the Diameter header

Prototype:

Serr = diameter::Message::setApplicationId($Smsg, $appld);

where serr iS undef if error (e.g wrong object passed in smsg) or a non-zero value if success

Purpose: Read the Diameter Hop-by-Hop Identifier in the Diameter header
Prototype:
my Shbh = diameter::Message::hopByHopId (Smsqg) ;

where $hbh is undef if error (e.g wrong object passed in smsg) or contains the Hop-by-Hop Identifier
if success

Purpose: Set the Diameter Hop-by-Hop Identifier in the Diameter header
Prototype:

Serr = diameter::Message: :setHopByHopId ($Smsg, S$hbh);

where serr IS undef if error (e.g wrong object passed in smsg) or a non-zero value if success

Purpose: Read the Diameter End-to-End Identifier in the Diameter header

DCA Programmer's Guide 71 of 96

Prototype:

my Serr = diameter::Message::endToEndId (Smsgqg) ;

where serr is undef if error (e.g wrong object passed in smsg) or contains the End-to-End Identifier
if success

Purpose: Set the Diameter End-to-End Identifier in the Diameter header

Prototype:

Serr = diameter::Message::setEndToEndId ($Smsg, S$Sele);

where $err is undef if error (e.g wrong object passed in $msg) or a non-zero value if success

10.1.2 API to Manipulate the Diameter AVPs

Purpose: Read from a Diameter message the value of an AVP identified by nhame and instance
number

Prototype:

my $val = diameter::Message::getAvpValue ($Smsg, $avp name [,
Sinstancel]) ;

The return values shall be:

e undef if $instanceis O,

e unders if there are less instances of the AVPin the Diameter message than the
$instance value or an AVP with the specified name does not exist in the Diameter
message or the AVP name is not specified in the AVP Dictionary,

e The value of the $instance-th instance of the AVP (starting from 1),

e The value of the first instance of the AVP if $instance has been omitted,

e undef if Smsg does not contain a diameter: :Message O diameter: : GroupedAvp ObjECt
or the other parameters (if any) are undef.

Purpose: Add at the end of the Diameter message an AVP identified by name and value

Prototype:

my Serr = diameter::Message::addAvpValue (Smsg, $avp name, Savp val);
The return code shall be:

Non-zero in case of success,

undef if the AVP name does not exist in the AVP Dictionary,

undef if the AVP name exists in the AVP Dictionary,

undef if the AVP value cannot be converted to the AVP data type specified in the AVP
Dictionary,

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp Object
or the other parameters (if any) are undef.

Purpose: Set the value of an AVP in a Diameter message

Prototype:

72 of 96 DCA Programmer's Guide

my Serr = diameter::Message::setAvpValue (Smsg, $avp name, Savp val
[, $instancel]);

If $instance has been omitted, the first instance of the AVP will be set. The return code shall be:

Non-zero in case of success,

undef if the AVP name does not exist in the AVP Dictionary,

undef if the AVP name exists in the AVP Dictionary,

undef if the AVP name is valid but no such AVP exists in the Diameter message,

undef if Sinstance IS0,

undef if the AVP exists in the Diameter message but $instance value is greater than

the number of AVP instances in the Diameter message,

e undef if the AVP value cannot be converted to the AVP data type specified in the AVP
Dictionary,

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp Object

or the other parameters (if any) are undef.

Purpose: Set the value of an existing AVP in a Diameter message or add that AVP at the end of the
Diameter message if the message already contains exactly sinstance — 1 AVPs:

Prototype:

my Serr = diameter::Message::setAddAvpValue ($msg, $Savp name,
$avp _val [, S$instancel);

If sinstance has been omitted, it defaults to 1. The return code shall be:

e 1incase an AVP with the specified instance number exists and its value has been
successfully set,

o 2 if the Diameter messages contains exactly $instance —1 AVPs of the specified type,
in which case the sinstance’ s AVP will be added to the end of the message,

e undef if the Diameter messages contains strictly less than $instance — 1 AVPs of the
specified type,

e undef if the AVP name does not exist in the AVP Dictionary,

e undef if the AVP name exists in the AVP Dictionary,

e undef if the AVP name is valid but the Diameter messages already contains sinstance
or more AVPs of the specified type,

e undef if $instance isO,

e undef if the AVP value cannot be converted to the AVP data type specified in the AVP
Dictionary,

e undef if Smsg does not contain a diameter: :Message O diameter: : GroupedAvp ObjECt
or the other parameters (if any) are undef.

Purpose: Read the value of an AVP’s flag octet
Prototype:

my $flags = diameter::Message::getAvpFlags (Smsg, $avp name [,
$instance]) ;

The return value shall be:

e The value of flags octet of the $instance-th instance of the AVP (starting from 1),

e The value of the first instance of the AVP if $instance has been omitted,

e undef if there are less instances of the AVP in the Diameter message than the
$instance value

DCA Programmer's Guide 73 of 96

undef if $instance is0

undef if an AVP with the specified name does not exist in the Diameter message

undef if the AVP name is not specified in the AVP Dictionary

undef if Smsg does not contain a diameter: :Message OfF diameter: : GroupedAvp Object
or the other parameters (if any) are undef.

Purpose: Set the value of an AVP’s flag octet
Prototype:

my Serr = diameter::Message::setAvpFlags ($msg, $avp name, Smask [,
Sinstancel]) ;

A 1 bitin smask indicates a bit to set, while a 0 bit in $Smask preserves the original bit value.

If sinstance has been omitted, the flags of the first instance of the AVP will be set. The return code
shall be:

Non-zero in case of success,
undef if the AVP name does not exist in the AVP Dictionary,
undef if the AVP name is valid but no such AVP exists in the Diameter message,
undef if the AVP exists in the Diameter message but $instance value is greater than
the number of AVP instances in the Diameter message,
e undef if Sinstance is 0,
e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp Object
or the other parameters (if any) are undef.
Note: The “V” bit preserves the original value regardless the $mask value.

Purpose: Clear specific bits in an AVP’s flag
Prototype:

my Serr = diameter::Message::clearAvpFlags (Smsg, $avp name, S$mask [,
Sinstancel]) ;

A 1 bitin $mask indicates a bit to clear, while a 0 bit in smask preserves the original bit value.

If sinstance has been omitted, the flags first instance of the AVP will be cleared. The return code
shall be:

Non-zero in case of success,
undef if the AVP name does not exist in the AVP Dictionary,
undef if the AVP name is valid but no such AVP exists in the Diameter message,
undef if the AVP exists in the Diameter message but sinstance value is greater than
the number of AVP instances in the Diameter message,
e undef if $instanceis O,
e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp Object
or the other parameters (if any) are undef.
Note: The “V” bit preserves the original value regardless the $mask value.

Purpose: Delete an AVP identified by name, from a Diameter message

Prototype:

my Serr = diameter::Message::delAvp ($msg, $avp name [, $instance]);

74 of 96 DCA Programmer's Guide

If sinstance has been omitted, the first instance of the AVP will be deleted. The return code shall
be:

1in case AVP is deleted,

0 if AVP does not exist in message,

undef if the AVP name does not exist in the AVP Dictionary,

undef if the AVP exists in the Diameter message but $instance value is greater than
the number of AVP instances in the Diameter message,

e undef if Sinstance is 0,

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object
or the other parameters (if any) are undef.

Purpose: Delete all the instances of an AVP from a Diameter message

Prototype:

my Serr = diameter::Message::delAvpAll ($msg, $avp name);
The return code shall be:

1in case AVP is deleted,

0 if AVP does not exist in message,

undef if the AVP name does not exist in the AVP Dictionary,

undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp ObjECt
or the other parameters (if any) are undef.

Note: The AVPs on the same nesting level are deleted, i.e. the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Return the number of instances of an AVP from a Diameter message

Prototype:

my $cnt = diameter::Message::countAvp (S$msg, $avp name);
The return value shall be:

e 0 ifthe AVP does not exist in the Diameter message,
e Astrictly positive number indicating the number of occurrences of the respective AVP in
the Diameter message,
e undef if the AVP name does not exist in the AVP Dictionary,
e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp Object
or the other parameters (if any) are undef.
Note: The AVPs on the same nesting level are counted, i.e. the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Check whether a specific AVP (instance) exists in a Diameter message

Prototype:

my Sexists = diameter::Message::avpExists($msg, Savp name [,
Sinstancel]) ;

DCA Programmer's Guide 75 of 96

The return value shall be:

o Trueif sinstance is omitted and at least one AVP with the specified name exists,
e Trueif sinstance is specified and an AVP with the specified name and instance
number exists,
False if no AVP with the specified name exists in the Diameter message,
o False if sinstance is specified, at least one AVP with the specified name exists, but the
number of instances of the respective AVP is strictly less than the specified $instance,
e undef if the AVP name does not exist in the AVP Dictionary,
e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp object
or the other parameters (if any) are undef.
Note: The AVPs on the same nesting level are checked, i.e. the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Return the length of the payload of an AVP from a Diameter message
Prototype:

my $len = diameter::Message::avpDatalength (Smsg, $avp name [,
Sinstancel]) ;

If sinstance has been omitted, the length of the first instance of the AVP will be returned. The
return value shall be:

e undef if no AVP with that name exists in the Diameter message,

e undef If Sinstance is specified but less than $instance AVPS exists in the Diameter
message,

e Astrictly positive number or 0, indicating the length of the payload of the indicated AVP
instance.

e undef if the AVP name does not exist in the AVP Dictionary,

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp Object
or the other parameters (if any) are undef.

10.1.3 API to Manipulate the Diameter Grouped AVPs

All the API functions introduced in the previous section, work on grouped AVPs as well. For
instance, the value of the Subscription-ld grouped AVP may be read with:

my $SgVal = diameter::Message::getAvpValue (Smsg, “Subscription-Id”);
and the Subscription-I1d grouped AVP may be added to a Diameter message with:

my Serr = diameter::Message::addAvpValue (Smsg, “Subscription-Id”,
Sgval) ;

It shall be noted, however, that in this case sgva1l is an OctetString that contains both the
“Subscription-1d-Type” and the “Subscription-ld-Data” AVPs.

This approach is particularly handy when the “Subscriber-I1d” grouped AVP needs to be copied from
one Diameter message to another, without having to look into the individual AVPs included in it.

However, if accessing the individual AVPs included into a grouped AVP is desired, then the
getGroupedAvp and addGroupedavp API calls provide the necessary support:

76 of 96 DCA Programmer's Guide

Purpose: Access a Grouped AVP in a Diameter message

Prototype:

my S$gAvp = diameter::Message::getGroupedAvp (Smsg, Savp name [,
$instance]) ;

The return value shall be:

e undef if the AVP name does not exist in the AVP dictionary,
e undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP,
e undef if the AVP name is valid but the Diameter message does not contain a Grouped
AVP with that name,
e undef if the AVP name is valid but the Diameter message contains less Grouped AVPs
with that name than specified in $instance,
e Adiameter::Groupedavp Grouped AVP object that corresponds to the respective
instance of the Grouped AVP (or to the first instance if $instance is omitted).
The $gAvp diameter: :Grouped AVP object can be used to manipulate the AVPs that it contains
using any of the API functions introduced so far:

$result = diameter::GroupedAvp::<API function>($gAVP,
<API function params>);

where the $gavPp object of type diameter: : Groupedavp replaces the smsg object of type
$diameter:Message and Sresult represents the return parameter of the respective API function..

Note: getGroupedavp Works recursively to get a grouped AVP ($nested_gAVP) contained in
another grouped AVP ($gavp):

my S$nested gAvp = diameter::Message::getGroupedAvp (SgAvp,
$avp_name) ;

where $gavp iSa dimeter: :GroupedAvp object

Purpose: Add a Grouped AVP to the end of a Diameter message
Prototype:
my S$gAvp = diameter::Message::addGroupedAvp ($msg, $avp name);
where $gAvp iS @ diameter: : GroupedAvp Object.
The return value shall be:

e undef if the AVP name does not exist in the AVP dictionary,

e undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP.
A diameter: :GroupedAvp Grouped AVP object can be further used to manipulate the AVPs that it
contains:

my S$subscription id = diameter::Message::addGroupedAvp ($msg,
“Subscription-Id”);

diameter:GroupedAvp: :addAvpValue ($subscription id, “Subscription-Id-
Type”, S$Savp_val);

diameter::GroupedAvp: :addAvpValue (Ssubscription id, “Subscription-
Id-Data”, Savp_val);

Note: addGroupedavp Works recursively to add a grouped AVP (snested_gAVP) within another
grouped AVP ($gavp):

DCA Programmer's Guide 77 of 96

my S$nested gAvp = diameter::Message::addGroupedAvp (SgAvp,
$avp_name) ;

where $gavp isa diameter: :GroupedAvp object

10.2 Diameter Transaction Stateful APls

10.2.1 Internal Variables

This API is primary intended to enable a DCA App to interact with Mediation Rules through Internal
Variables. Internal Variables have been introduced by the Mediation feature and can be configured
from Main Menu: Diameter > Mediation = Internal Variables. Internal Variables are persistent
throughout the lifetime of a Diameter transaction.

Purpose: Access Internal Variables
Prototype:
my $iv_ref = new diameter::InternalVarDef (“<IV Name>");

my S$internalVarMap = diameter::Param::internalVarMap (Sparam) ;

where sparam is the opaque parameter passed to every event handler and <1v_Name> is the name
assigned to the Internal Variable in Main Menu: Diameter > Mediation - Internal Variables.

Note: The Internal Variables are configurable at the B level, therefore the <1v_name> must be
configured on all the sites. Otherwise, the initialization will fail when invoked on those DA-MP
located in sites where <1v_name> does not exist.

Purpose: Set and Get Internal Variables
Prototype:
diameter::InternalVarMap::set ($internalvVarMap, iv_ref, Sval);

$val = diameter::InternalVarMap::get ($SinternalVarMap, $iv_ref);

Enables setting values to and retrieving values from an internal variable, where siv ref and
$internalvVarMap are initialized as shown before.

10.2.2 Diameter Transaction Context Variables

The Diameter transaction context variables offer Diameter transaction persistent storage, similar to
Internal Variables. Unlike Internal Variables, Diameter transaction context variables are not
configurable via the GUI (which provides for a much simpler API) and cannot be shared with other
features.

Purpose: Store Diameter transaction context variables

Prototype:

Serr = dca::transctx::store(“<var_ id>", S$var)

The function shall return undef if svar IS undef Or any error occurs (e.g. svar is a Perl hash or array
that cannot be successfully encoded into JSON or DSR cannot allocate more memory space for the

78 of 96 DCA Programmer's Guide

Diameter context variable) and 1 if the operation is successful.

Purpose: Retrieve Diameter transaction context variables

Prototype:

$var = dca::transctx::fetch(“<var id>");

unde f Will be returned in case of failure (e.g. <var id> is not found because no variable with that
name has been previously stored).

10.3 Read DCA App Configuration Data

This API enables a DCA App to access its configuration data which was specified and provisioned as
described in sections 3.3.3 and 3.3.4.

When the Perl script is generated, the DCA App configuration data is converted into a Perl variable.
The Perl variable name is sdca: :appconfig and is a hash (one key for each table) of arrays (one
index for each record) of hashes (one key for each field in the table).

Read-only access on the DCA App configuration data is enforced using the Const::Fast CPAN
module and applies to the data included in the ¢dca: : appconfig definition (which is automatically
generated from the DCA App configuration data).

Note that there are semantical differences from one Const::Fast version to another, which affect the
way sdca: :appConfig can be subsequently manipulated in the Perl script with regard to adding new
records to 2dca: :appConfig Or accessing records that are not defined in $dca: :appConfig.

For instance, in version 0.006, which is the one currently used, an attempt to read or assign a value to
an inexistent table (outermost hash key) ¢dca: :appconfig will result in a runtime error.

On the other hand, assigning values to inexistent indexes (table records) and/or inexistent fields
(innermost hash key) will succeed and can be subsequently successful read, while reading from
inexistent indexes and/or inexistent fields will return unde£. These indexes and fields will not be
written back to the DCA App configuration data.

Purpose: Read the DCA App configuration data
Prototype:

Sdca::appConfig{“<config table name>"} [<row_index>] {“<field name>"}

for non-“single row” configuration tables,

Sdca::appConfig{“<config table name>"}{“<field name>"}

for “single row” configuration tables.

Example: Assuming a DCA App defines a configuration table called "MyTable” with two fields
“FieldA” and “FieldB” and provisions a few rows, it shall be possible to retrieve the NOAM and
SOAM provisioned data from the DCA app in the following way:

for $i (0 .. $#dca::appConfig{“MyTable”}) {
dca::application::logInfo($Sdca::appConfig{“MyTable”}[$i]{“Fieldl”});

dca::application::logInfo($dca::appConfig{“MyTable”} [$i]{“Field2”});

DCA Programmer's Guide 79 of 96

10.4 Routing API

The routing API enables a DCA App to perform some basic routing functions.

The<jca::action::forward(),dca::action::answer($ans) and dca::action::drop()/\P|
functions terminate the execution of the event handler. This means that the statements that follow
them in the Perl code are not executed. This also has a side effect on the UDR queries initiated before
inVOKHKJany’Ofdca::action::forward(),dca::action::answer(Sans) and

dca::action::drop () because, as mentioned in Error! Reference source not found., the UDR q
ueries are actually sent after the execution of the event handler completes: the side effect is therefore
that the UDR queries will be also not executed (i.e. sent to the UDR).

BeﬁdeSdca::action::forward(),dca::action::answer($ans)anddca::action::drop(),an
event handler’s execution flow also terminates (as any other Perl subroutine) when a return
statement is encountered or when the enclosing curly bracket is reached. In this case the implicit
routing decision that the DCA framework takes is the one configured for the runtime error behavior
(section 3.3.1) even though this situation need not necessary be an error condition. However, if the
value returned from the event handler is negative, the "DCA Runtime Errors" alarm (Alarm ID 33304)
will also be raised.

Purpose: Complete the processing and drop the message

Prototype:

dca::action::drop();

Note: Invoking dca: :action::drop () causes the event handler to immediately terminate execution.

Purpose: Built a Diameter Answer

Prototype:

Sans = new dca::application::answer (<error code>, <error text>,
<vendor id>);

The function shall return undef in case of failure, or a diameter: :Message Object.

When receiving a Diameter request or answer this API function enables a DCA App to construct a
Diameter answer and either return it to the originator of the corresponding Diameter request or,
respectively, substitute the original Diameter answer message.

The EDL API (see section 10.1) may be used to further process the sans Diameter answer (e.g. add
more AVPs).

Purpose: Send a Diameter Answer Created by the DCA App
Prototype:

dca::action::answer ($ans) ;

Note: Invoking dca: :action: :answer (Sans) causes the event handler to immediately terminate
execution.

Purpose: Complete the processing and pass the message

80 of 96 DCA Programmer's Guide

Prototype:

dca::action::forward() ;
Enables a DCA App to pass a Diameter message to the Diameter Routing Layer for routing.

Note: Invoking dca: :action::forward () causes the event handler to immediately terminate
execution.

Purpose: Specify an ART based on which a Diameter request shall be routed
Prototype:
Serr = dca::route: :setART (<ART table name>);

The function shall return unaef if the name of the ART does not exist (failure) or 1 if success.

Before invoking dca: :action: : forward () ona Diameter request, this routing API function enables
a DCA App to specify which ART to be used for routing the respective Diameter request.

Note: The ART is configurable at the B level, therefore the <aART table name> must be configured
on all the sites. Otherwise, the API function will fail when invoked on those DA-MP located in sites
where <aRT table name> O€S not exist.

Purpose: Specify a PRT based on which a Diameter request shall be routed
Prototype:
Serr = dca::route::setPRT (<PRT table name>);
The function shall return undef if the name of the PRT does not exist (failure) or 1 if success.

Before invoking dca: :action:: forward () on a Diameter request, this routing API function enables
a DCA App to specify which PRT to be used for routing the respective Diameter request.

Note: The PRT is configurable at the B level, therefore the <prRT table name> must be configured on
all the sites. Otherwise, the API function will fail when invoked on those DA-MP located in sites
where <pRT table name> 0€S NOt exist.

10.5 Debugging API

The Debugging API allows tracking the execution of the event handlers by supporting the equivalent

2% ¢

of “printf”, “log”, “echo”, etc. functions in other programming/scripting languages.

The messages are logged in the dsr.DCA trace file (use tr.tail dsr.DCA). The following masks may be
applied using the tr.set command to filter the ERROR, INFO and WARNING error messages:
0x00000001 (error), 0x00000002 (info) and respectively 0x00000004 (warning).

All the traces generated by a DCA app using the API calls will be prefixed with the DCA application
name (in order to allow for further filtering e.g. using the grep utility).

Note however that in a production network DSR logs only the vital traces are therefore the main
debugging tool for DCA Apps in production networks is the IDIH feature.

Purpose: Retrieve the application name

DCA Programmer's Guide 81 of 96

Prototype:

Sappname = dca::application::getAppName () ;

Purpose: Retrieve the version name

Prototype:

Svername = dca::application::getVersionName () ;

Note: Besides debugging, another possible use case for reading the version name is including it in the
DCA app state stored on the UDR. This will support backward compatibility in case the DCA app
frequently changes the format of the DCA app across DCA app versions.

Purpose: Retrieve the current state

Prototype:

Sverstate = dca::application::getState();

Note: The states returned can be either Trial or Production, since these are the only states when the
DCA App is executed.

Purpose: Generate a trace containing user-defined messages and having a severity of INFO

Prototype:

dca::application::logInfo (<message>);

The user-defined messages shall be logged into dsr.DCA (tr.tail dsr.DCA).

Purpose: Generate a trace containing user-defined messages and having a severity of WARNING

Prototype:

dca::application::logWarn (<message>) ;

Purpose: Generate a trace containing user-defined messages and having a severity of ERROR

Prototype:

dca::application::logError (<message>) ;

10.6 Custom MEAL API

Once the Custom MEAL objects are differentiated from the Main Menu: DCA Framework—><DCA
App Name>->Custom MEALS screen (see section 9.2.2), they can be initialized and used from
DCA Apps.

10.6.1 Counter Template API

Purpose: A DCA App shall be able to bind to a Scalar Counter Custom MEAL by referring to it by
the Custom MEAL configured name:

82 of 96 DCA Programmer's Guide

Prototype:

my $all_Cnt = new dca::meal::counter ("MyCnt”);
where “mycnt~ is the name specified when differentiating a Custom MEAL template of type
“Counter” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Scalar Counter.

In case of failure under shall be returned. Possible failure cases are:
e No Custom MEAL with the specified name is currently defined,

¢ A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not a Scalar Counter.

Note: As a matter of best practice, the initialization of the Custom MEAL objects shall be performed
in the main body of the Perl script, which is executed once right after a successful compilation (rather
than in an event handler):

die ,Custom MEAL differentiation failure“

unless $obj = new dca::meal::<TemplateType> (“"MyCustomMeal") ;

This ensures that a compilation error will be triggered if the binding process has failed, for instance
because there is a name mismatch between the Perl script and the differentiation GUI screen. Using an
undefined sobj later in the event handlers will trigger run-time errors.

Purpose: A DCA App shall be able to peg a Scalar Counter Custom MEAL.:
Prototype:

Serr = Sall Cnt->peg();

where sa11 cnt shall be a valid Scalar Counter Custom MEAL object.

The API call shall return 1 if success and under if the operation on the underlying Comcol object has
failed.

Purpose: A DCA App shall be able to bind to an Arrayed Counter Custom MEAL by referring to it
by the Custom MEAL configured name:

Prototype:

my S$per Cnt = new dca::meal::arrayedCounter (“MyArrayedCnt");
where “MyArrayedcnt” is the name specified when differentiating a Custom MEAL template of type
“Counter” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Arrayed Counter.

In case of failure under shall be returned. Possible failure cases are:
e No Custom MEAL with the specified name is currently defined,;

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not an Arrayed Counter.

Purpose: A DCA App shall be able to peg a specific index of an Arrayed Counter Custom MEAL.:
Prototype:

Serr = $per Cnt->peg($index);

DCA Programmer's Guide 83 of 96

where sper cnt shall be a valid Arrayed Counter Custom MEAL object and sindex is the index to be
pegged.

The API call shall return 1 if success and under if the either operation on the underlying Comcol
object has failed or the index value is negative.

10.6.2 Rate Template

Purpose: A DCA App shall be able to bind to a Scalar Rate Custom MEAL by referring to it by the
Custom MEAL configured name:

Prototype:

my $all_Rate = new dca::meal::rate(“"MyRate");
where “MyRate” is the name specified when differentiating a Custom MEAL template of type “Rate”
and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Scalar Rate.

In case of failure undet shall be returned. Possible failure cases are:
¢ No Custom MEAL with the specified name is currently defined;

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not a Scalar Rate.

Purpose: A DCA App shall be able to peg a Scalar Rate Custom MEAL.:
Prototype:

Serr = $all Rate->peg();

where sa11 rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return 1 if success and under if the operation on the underlying Comcol object has
failed.

Purpose: A DCA App shall be able to read the current value of a Scalar Rate Custom MEAL.:
Prototype:

$val = Sall Rate->readRate();

where sa11 Rrate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return an integer representing the current value in case of success and undef if the
operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to read the average value of a Scalar Rate Custom MEAL.:
Prototype:

$val = Sall Rate->readAvgRate();

where $a11 rate Shall be a valid Scalar Rate Custom MEAL object.

The API call shall return an integer representing the average value in case of success and undef if the
operation on the underlying Comcol object has failed.

84 of 96 DCA Programmer's Guide

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an
Scalar Rate template:

Prototype:

Serr = Sall Rate->getSeverity();

where sa11 rate Shall be a valid Scalar Rate Custom MEAL object.

The API call shall return:

® dca::meal::Critical,dca::meal::Major, dca::meal::Minor, dca::meal::Cleared
e undef if the operation on the underlying Comcol object has failed.

Note: The severity values are defined as:

use constant {
Cleared => 0,
Info => 1,
Minor=> 2,
Major=> 3,
Critical => 4,
i

which enables comparing them. For instance:
if ($all Rate->getSeverity() >= dca::meal::Major)

will be true if the severity is Major or Critical and will be false if the severity if Minor. This also
applies to Basic as well as arrayed templates.

Purpose: A DCA App shall be able to bind to an Arrayed Rate Custom MEAL by referring to it by
the Custom MEAL configured name:

Prototype:

my $per Rate = new dca::meal::arrayedRate (“MyArrayedRate");
where “MyArrayedrate” is the name specified when differentiating a Custom MEAL template of type
“Rate” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Arrayed Rate.

In case of failure undef shall be returned. Possible failure cases are:
¢ No Custom MEAL with the specified name is currently defined;

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not an Arrayed Rate.

Purpose: A DCA App shall be able to peg a specific index of an Arrayed Rate Custom MEAL.:
Prototype:

Serr = Sper Rate->peg(Sindex);
where sper Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the index to be
pegged.

The API call shall return 1 if success and unde £ if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA App shall be able to read the current value of a specific index of an Arrayed Rate
Custom MEAL.:

Prototype:

DCA Programmer's Guide 85 of 96

$val = Sper Rate->readRate ($index);
where sper Rrate Shall be a valid Arrayed Rate Custom MEAL object and sindex is the index the
current value of which shall be read.

The API call shall return an integer representing the current value of the specified index in case of
success and under if either the operation on the underlying Comcol object has failed or the index
value is negative.

Purpose: A DCA App shall be able to read the average value of a specific index of an Arrayed Rate
Custom MEAL.:

Prototype:

$val = Sper Rate->readAvgRate ($index);
where sper Rate shall be a valid Arrayed Rate Custom MEAL object and sindex is the index the
average value of which shall be pegged.

The API call shall return an integer representing the average value of the specified index in case of
success and undef if either the operation on the underlying Comcol object has failed or the index
value is negative.

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an
Arrayed Rate template:

Prototype:
Serr = $per Rate->getSeverity($index);
where sper Rate Shall be a valid Arrayed Rate Custom MEAL object and sindex identifies the
particular index the alarm status of which shall be read.
The API call shall return:
® dca::meal::Critical,dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

e undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

10.6.3 Basic Template

Purpose: A DCA App shall be able to bind to a Scalar Basic Custom MEAL by referring to it by the
Custom MEAL configured name:

Prototype:

my $all Size = new dca::meal::basic(“MyBasic");
where “MyBasic” is the name specified when differentiating a Custom MEAL template of type
“Basic” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Scalar Basic template.

In case of failure under shall be returned. Possible failure cases are:
o No Custom MEAL with the specified name is currently defined;

¢ A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not a Scalar Basic.

86 of 96 DCA Programmer's Guide

Purpose: A DCA App shall be able to set the value of a Scalar Basic Custom MEAL:
Prototype:

Serr = $Sall Size->setValue($value);
where sa11 size shall be a valid Scalar Basic Custom MEAL object and svalue is the value the
Scalar Basic Custom MEAL shall be set to.

The API call shall return 1 if success and under if the operation on the underlying Comcol object has
failed.

Purpose: A DCA App shall be able to increment the value of a Scalar Basic Custom MEAL.:
Prototype:

$err = $all Size->increment ($count);
where sa11 size shall be a valid Scalar Basic Custom MEAL object and scount is the value the
Scalar Basic Custom MEAL shall be incremented with.

The API call shall return 1 if success and under if the operation on the underlying Comcol object has
failed.

Purpose: A DCA App shall be able to decrement the value of a Scalar Basic Custom MEAL.:
Prototype:

Serr = $all Size->decrement ($count);
where sa11 size shall be a valid Scalar Basic Custom MEAL object and scount is the value the
Scalar Basic Custom MEAL shall be decremented with.

The API call shall return 1 if success and under if the operation on the underlying Comcol object has
failed.

Purpose: A DCA App shall be able to read the current value of a Scalar Basic Custom MEAL.:
Prototype:

Sval = $all Size->getValue();

where sa11_size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return an integer representing the current value in case of success and undef if the
operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to read the average value of a Scalar Basic Custom MEAL.:
Prototype:

$val = S$all Size->getAvgValue();

where sa11 size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return an integer representing the average value in case of success and undeft if the
operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an
Scalar Basic template:

Prototype:

$err = $all Size->getSeverity();

where sa11 size shall be a valid Scalar Basic Custom MEAL object.

DCA Programmer's Guide 87 of 96

The API call shall return:
® dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

o undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to bind to an Arrayed Basic Custom MEAL by referring to it by
the Custom MEAL configured name:

Prototype:

my $per Size = new dca::meal::arrayedBasic(“MyArrayedBasic");
where “Myarrayedpasic” is the name specified when differentiating a Custom MEAL template of
type “Basic” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Arrayed Basic template.

In case of failure under shall be returned. Possible failure cases are:
e No Custom MEAL with the specified name is currently defined,

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not an Arrayed Basic.

Purpose: A DCA App shall be able to set the value of an Arrayed Basic Custom MEAL.:
Prototype:

Serr = $per Size->setValue($value, $index);
where sper size shall be a valid Arrayed Basic Custom MEAL object, sindex is the index the value
of which shall be set and sva1ue is the value it shall be set to.

The API call shall return 1 if success and under if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA App shall be able to increment the value of an Arrayed Basic Custom MEAL.:
Prototype:

Serr = $per Size->increment ($count, S$index);
where sper size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the value
of which shall be incremented and scount is the value it shall be incremented with.

The API call shall return 1 if success and under if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA App shall be able to decrement the value of an Arrayed Basic Custom MEAL.:
Prototype:

Serr = S$per Size->decrement ($count, S$index);
where sper size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the value
of which shall be decremented and scount is the value it shall be decremented with.

The API call shall return 1 if success and under if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA App shall be able to read the current value of an Arrayed Basic Custom MEAL:
Prototype:

88 of 96 DCA Programmer's Guide

$val = S$per Size->getValue ($index);
where sper size shall be a valid Arrayed Basic Custom MEAL object and sindex is the index the
value of which shall be read.

The API call shall return an integer representing the current value of the specified index in case of
success and undeft if either the operation on the underlying Comcol object has failed or the index
value is negative.

Purpose: A DCA App shall be able to read the average value of an Arrayed Basic Custom MEAL.:
Prototype:

$val = S$per Size->getAvgValue ($index);
where sper size shall be a valid Arrayed Basic Custom MEAL object and sindex is the index the
average value of which shall be read.

The API call shall return an integer representing the average value of the specified index in case of
success and undef if either the operation on the underlying Comcol object has failed or the index
value is negative.

Purpose: A DCA App shall be able to determine the current severity of the alarm associated to an
Arrayed Basic template:

Prototype:
Serr = S$per Size->getSeverity (Sindex);
where sper size shall be a valid Arrayed Basic Custom MEAL object and sindex identifies the
particular index the alarm status of which shall be read.
The API call shall return:
® dca::meal::Critical,dca::meal::Major, dca::meal::Minor, dca::meal::Cleared

o undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

10.6.4 Event Template

Purpose: DCA App shall be able to bind to an Event Custom MEAL by referring to it by the Custom
MEAL configured name:

Prototype:

my SerrorEvent = new dca::meal::event (“MyEvent");
where “MyEvent” is the name specified when differentiating a Custom MEAL template of type
“Event”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL object
may be used in subsequent API calls to perform specific operations on the Event.

In case of failure undes shall be returned. Possible failure cases are:
e No Custom MEAL with the specified name is currently defined,

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed,
or the un-differentiation process was initiated;

e A Custom MEAL with that name exists, but it is not a Event.

DCA Programmer's Guide 89 of 96

Purpose: A DCA App shall be able to generate an event (Info severity), raise an alarm (Minor,
Major, Critical severity) and clear an alarm (Clear severity):

Prototype:
Serr = S$errorEvent->log(S$severity, $addInfoText);
where serrorevent Shall be a valid Event Custom MEAL object, sseverity is one of the possible

VmueS(dca::meal::Critical,dca::meal::Major,dca::meal::Minor,dca::meal::Cleared)and
SaddInfoText 18 the text that should be included in the alarm’s additional information field.

The API call shall return 1 if success and under if the operation on the underlying Comcol object has
failed.

Purpose: A DCA App shall be able to determine whether an event or alarm is throttled:
Prototype:
Serr = SerrorEvent->isThrottled($Sseverity);

where serrorkEvent shall be a valid Event Custom MEAL object, sseverity is one of the possible

VMUGS(dca::meal::Critical,dca::meal::Major,dca::meal::Minor,dca::meal::lnfo)
The API call shall return:

e 1 if the event/alarm is throttled;

o 0 if the event/alarm is not throttled;

e undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App shall be able to determine the current severity of an event or alarm:
Prototype:

Serr = S$errorEvent->getSeverity();

where serrorkvent Shall be a valid Event Custom MEAL object.
The API call shall return:

® dca::meal::Critical,dca::meal::Major,dca::meal::Minor, dca::meal::Info
dca::meal::Cleared

o undef if the operation on the underlying Comcol object has failed.

10.7 UDR API

The UDR API enables a DCA App to create, read, update and delete data in a UDR DB. As described
in section Error! Reference source not found. the UDR API calls work asynchronously and a ¢
allback subroutine is necessary in order to fetch the result of the query.

10.7.1 The Prototype of Queries and Query Results

This section describes the common structure of the UDR API functions and how the results of a UDR
query can be retrieved in the Perl script.

Section 10.7.2 further describes the particularities of each individual UDR API function.

10.7.1.1 Specifying the Query
All the UDR API functions share a common prototype:

Serr = dca::udr::udrInstance (<GLOBAL UDR>)-><API function>(
<key type>, <key data type>, Skey,

90 of 96 DCA Programmer's Guide

<value data type>, S$value,
<callback subroutine>,

)

where:

<GLOBAL_UDR> IS & String (a constant value or a scalar variable) containing the global name of the
UDR DB the query shall be sent to.

<APT function> IS one of: createOrRead, update, bulkDelete ..

<key type> IS typically a constant value defined by the DCA App. It distinguishes between
different key types that a DCA App may use (e.g. IMSI, NAI, IP, IP_SRC, etc.). For example, the
key value "fred" of type "NAI" is a different key from 66.72.65.64 of type "IP", even though they
have the same binary representation;

<key data_type> IS pre-defined constant that describes the data type of the key and must be one
of:

dca: :udr: :KeyDataType: : BCD — the key shall be a scalar,

dca: :udr: :KeyDataType: : UINT32 — the key shall be a scalar,

dca: :udr: :KeyDataType: : UINT64 — the key shall be a scalar,

dca: :udr: :KeyDataType: : STRING — the key shall be a scalar,

dca: :udr: :KeyDataType: : IPv4 — the key shall be a NetAddr::IP object,
dca: :udr: :KeyDataType: : IPv6 — the key shall be a NetAddr::IP object.

Note: There is no explicit data type for float numbers, float numbers will be converted to
strings.
skey IS a Perl variable that holds the key part of the key-value pair to be created, read, updated or
deleted.

<value data_ type> iS pre-defined constant that describes the data type of the key and must be
one of:

O O O O O O

dca::udr::StateDataType: :BCD — the key shall be a scalar,
dca::udr::StateDataType: : UINT32 — the key shall be a scalar,
dca::udr::StateDataType: : UINT64 — the key shall be a scalar,

o O O O

dca::udr::StateDataType: : STRING — the key shall be a scalar, an array reference or a
hash reference.,

Note: Arrays and hashes are encoded into JSON and stored in the UDR DB in string format.
O dca::udr::StateDataType::IPv4 — the key shall be a NetAddr::IP object,
O dca::idr::StateDataType::1Pv6 — the key shall be a NetAddr::IP object.

Note: There is no explicit data type for float numbers, float numbers will be converted to
strings.
svalue iS a Perl variable that holds the value part of the key-value pair to be written into the UDR
(via create or update operations). Note therefore that read and delete do not specify a svalue
parameter and as a result also N0 <value data type> parameter;

<callback subroutine> IS a string representing the name of the Perl subroutine that will be
invoked by the DCA framework to deliver the query result;

The API call shall return:

1 if the parameters are successfully parsed and encoding into a Stack Event.
Note that, because the API call works asynchronously, at this stage the query hasn't been sent yet,

its outcome cannot be known, serr merely tells whether a query could be successfully built.

undef If parsing or encoding the parameters fails.

DCA Programmer's Guide 91 of 96

10.7.1.2 Retrieving the Query Result

The result of a UDR query can be retrieved in the callback function by using the
dca::udr::result () class. An error code will always be returned and some queries also return data
(consisting of the data type along with the data itself):

1. $err_code = dca::udr::result () ->code ()

Retrieves the error code. If the error codes indicates success (dca: :udr: :ResultCode: : Success)
then some API functions also return data, which can be retrieved using the dataType () and

data () methods described below.

A number of error codes are common to all UDR API functions:

O dca::udr::ResultCode: :Success — indicates the query has successfully executed the
intended operation;

O dca::udr::ResultCode: :AccessError — an error occurred on the UDR side that prevented
the query to be executed,;

O dca::udr::ResultCode::SendError — an error occurred when attempting to send the query,
typically because of ComAgent overload (ComAgent related alarms will be raised in this
case);

O dca::udr::ResultCode: :MaxStateSize — the size of either the key or the data, the DCA
App attempts to look up or respectively store in the UDR DB, exceeds the configured
maximum sizes (Main Menu: DCA Framework-> Configuration, "Maximum Size of
Application State” and respectively "Maximum Size of the Key" options)

O dca::udr::ResultCode: :MaxEventReached — the maximum number of UDR queries that a
Diameter message event handler is allowed to send has been exceeded (see Main Menu:
DCA Framework—><DCA App Name>->General Options, "Max. UDR Queries per
Message" option).

2. $data_type = dca::udr::result()->dataType () ;

If the result contains data, then datatype () will return the data type of the stored data, i.e. one
of: dca::udr: :StateDataType: :BCD, dca: :udr::StateDataType: :UINT32,
dca::udr::StateDataType: :UINT64, dca::udr::StateDataType: : STRING,
dca::udr::StateDataType: :I1Pv4, dca: :udr: :StateDataType: : IPv6,

If the result contains no data, then datatype () will return undes.

3. Sdata = dca::udr::result()->data();
If the result contains data, then data () will return the stored data.
If the result contains no data, then data () will return under.

10.7.2 The UDR API Functions

Purpose: Attempts to create a key-value record in a UDR DB or fails if a record with the same key
already exists.

Prototype: (see also section 10.7.1.1)

Serr = dca::udr::udrInstance (<GLOBAL UDR>)->create (
<key type>, <key data type>, Skey,
<value data type>, S$value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see
also section 10.7.1.2):

dca: :udr: :result () ->code () dca: :udr: :result() dca: :udr: :result()
->dataType () ->data()

92 of 96 DCA Programmer's Guide

dca::udr::ResultCode: :Success undef undef
(The record does not exist and was created)
dca::udr::ResultCode:: AccessError, undef undef
dca::udr::ResultCode: :SendError
dca::udr::ResultCode: :MaxStateSize
dca::udr::ResultCode: :MaxEventReached

undef undef

Purpose: Creates a key-value record in a UDR DB or returns the record, if a record with the same key
already exists.

Prototype: (see also section 10.7.1.1)

Serr

= dca::udr::udrInstance (<GLOBAL UDR>)->createOrRead (
<key data type>,
<value_data_type>,

<key type>,

Skey,
Svalue,

<callback subroutine>,

);

Query Results: The possible result of the create API function are described in the table below (see
also section 10.7.1.2):

dca: :udr: :result () ->code ()

dca: :udr: :result()

dca: :udr: :result()

->dataType () ->data ()
dca::udr::ResultCode: :Success undef undef
(The record does not exist and was created)
dca::udr::ResultCode: :DBError, undef undef
dca::udr::ResultCode: :SendError
dca::udr::ResultCode: :AccessError
dca::udr::ResultCode: :MaxStateSize
dca: :udr: :ResultCode: :MaxEventReached

Purpose: Reads the value associated to a key from the UDR DB, or fails if the key is not found.

Prototype: (see also section 10.7.1.1)
= dca::udr::udrInstance (<GLOBAL UDR>)->read (

Serr

<key type>,

<key data type>,

Skey,

<callback subroutine>,

);

Note that no svalue parameter is present since no value is supposed to be written into the UDR DB.

Query Results: The possible result of the create API function are described in the table below (see
also section 10.7.1.2):

dca: :udr: :result () ->code ()

dca: :udr: :result()

dca: :udr: :result()

->dataType () ->data()
dea::udr::ResultCode::Success The data type of the The existing record
(The record exists and was read) existing record
dca::udr::ResultCode: :DBError, undef undef
dca::udr::ResultCode: :SendError
dca::udr::ResultCode: :AccessError
dca::udr::ResultCode: :MaxStateSize
dca::udr::ResultCode: :MaxEventReached

DCA Programmer's Guide 93 of 96

Purpose: Attempts to update the value associated with a key in the UDR DB or fails if a record with

the key could not be found.
Prototype: (see also section 10.7.1.1)

Serr = dca::udr::udrInstance (<GLOBAL UDR>)->update (
<key type>, <key data type>, Skey,

<value data type>,

Svalue,

<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca: :udr: :result () ->code ()

dca: :udr: :result()

dca: :udr: :result()

->dataType () ->data()
dca::udr::ResultCode: :Success undef undef
(The record exists and was updated)
dca::udr::ResultCode: :DBError, undef undef
dca::udr::ResultCode: :SendError
dca::udr::ResultCode: :AccessError
dca::udr::ResultCode: :MaxStateSize
dca: :udr: :ResultCode: :MaxEventReached

Purpose: Attempts to create or update the value associated with a key

Prototype: (see also section 10.7.1.1)

Serr = dca::udr::udrInstance (<GLOBAL UDR>)->createOrUpdateRequest (
<key type>, <key data type>, Skey,

<value data type>,

Svalue,

<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca: :udr: :result () ->code ()

dca: :udr: :result()

dca: :udr: :result()

->dataType () ->data()
dca::udr::ResultCode: :Success undef undef
(The record exists and was successfully updated)
dca::udr::ResultCode: :DBError, undef undef
dca::udr::ResultCode: :SendError
dca::udr::ResultCode: :AccessError
dca::udr::ResultCode: :MaxStateSize
dca::udr::ResultCode: :MaxEventReached

Purpose: Deletes a key-value record from the UDR DB, or fails if the key is not found.

Prototype: (see also section 10.7.1.1)

Serr = dca::udr::udrInstance (<GLOBAL_ UDR>)->bulkDelete (
<key type>, <key data type>, Skey,
<callback subroutine>);

Note that no svalue parameter is present since no value is supposed to be written into the UDR DB.

Query Results: The possible result of the create API function are described in the table below (see

also section 10.7.1.2):

dca: :udr: :result () ->code ()

dca: :udr: :result()

dca: :udr: :result()

->dataType () ->data()
dca::udr::ResultCode: :Success undef undef
(The record exists and was deleted)
dca::udr::ResultCode: :DBError, undef undef

94 of 96

DCA Programmer's Guide

dca:
dca:
dca:

dca:

udr::
udr:
udr:

:udr:

ResultCode:
:ResultCode:
:ResultCode:

:ResultCode:

:SendError
:AccessError
:MaxStateSize

:MaxEventReached

DCA Programmer's Guide

95 of 96

A.1 Notes

1) Reserved keywords: initDcaVars

96 of 96 DCA Programmer's Guide

	1 Introduction
	1.1 References
	1.2 Glossary
	1.3 Terminology

	2 DCA Activation and Deactivation
	2.1 DCA Activation
	2.1.1 DCA Framework Activation
	2.1.2 DCA App Activation
	2.1.3 Post-Activation DCA App State

	2.2 DCA Deactivation
	2.2.1 DCA Application De-Activation
	2.2.2 DCA Framework De-Activation

	3 DCA App Provisioning – The “Blacklist” DCA App
	3.1 The „Blacklist“ DCA App
	3.2 Prerequisites
	3.3 The Process
	3.3.1 Step 1: Configure the DCA App's General Options and Behavior
	3.3.2 Step 2: Create New Development Application Version
	3.3.3 Step 3: Define the configuration data structure
	3.3.4 Step 4: Provision the Configuration Data
	3.3.5 Step 5: Provision the Business Logic
	3.3.5.1 Where is the Perl script being executed?
	3.3.5.2 How do the Event Handlers get invoked?
	3.3.5.3 How does the DCA App configuration data get accessed?
	3.3.5.4 What is the „main part“ good for?

	3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax
	3.3.7 Step 7: Test the DCA App Version
	3.3.8 Step 8: Promote the DCA App Version to Production State

	4 DCA Application Lifecycle
	5 Developing Statefull DCA Apps
	6 A Statefull DCA App Using the UDR DB
	6.1 The „CountULR“ DCA App
	6.2 Prerequisites
	6.3 The Process
	6.3.1 Step 1: Configure the DCA App's Global Options and Behavior
	6.3.2 Step 2: Create a New Development Version
	6.3.3 Step A: Configure the UDR DBs
	6.3.3.1 Configure UDR DB as Remote server
	6.3.3.1.1 ComAgent Configuration on DSR
	6.3.3.1.2 Comagent Configuration on UDR
	6.3.3.1.3 Comagent Connection Status Validation

	6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application
	6.3.3.3 Audit Time Configuration on Active UDR NOAM

	6.3.4 Step 3: Define the Configuration Data Schema
	6.3.5 Step 4: Provision the Configuration Data
	6.3.6 Step 5: Provision the DCA App Business Logic
	6.3.6.1 What does a “state” consist of?
	6.3.6.2 What are Asynchronous API Calls and Callbacks?
	6.3.6.3 How is the UDR state returned to the Perl script?

	6.3.7 Step 6: Render the Flow Control Chart
	6.3.8 Step 7: Test the DCA App Version
	6.3.9 Step 8: Promote the DCA App Version to Production

	7 Monitoring a DCA App
	8 A DCA App Using Custom MEALs
	8.1 The „Rate“ DCA App
	8.2 Prerequisites
	8.3 The Process
	8.3.1 Step I: Differentiate a C-MEAL
	8.3.2 Step 1: Configure the DCA App's General Options and Behavior
	8.3.3 Step 2: Create a New Development Version
	8.3.4 Step 3: Define the Configuration Data Schema
	8.3.5 Step 4: Provision the Configuration Data
	8.3.6 Step 5: Provision the DCA App Business Logic
	8.3.7 Step 6: Render the Flow Control Chart
	8.3.8 Step 7: Test the DCA App Version
	8.3.9 Step 8: Promote the DCA App Version to Production

	9 GUI Overview
	9.1 NO/SO differences
	9.2 NO Screens
	9.2.1 Configuration Screen
	9.2.2 Custom MEALs
	9.2.2.1 View Custom MEALs
	9.2.2.2 Configure the Counter Custom MEAL Template
	9.2.2.3 Configure the Basic Custom MEAL Template
	9.2.2.4 Configure the Rate Custom MEAL Template
	9.2.2.5 Configure the Event Custom MEAL Template

	9.2.3 General Options Screen
	9.2.4 Trial MPs Assignment Screen
	9.2.5 Application Control Screen
	9.2.6 Create New Development Screen
	9.2.7 Copy to New Development Screen
	9.2.8 Export Pop-Up Window
	9.2.9 Import Pop-Up Window
	9.2.10 Development Environment
	9.2.11 Tables Screen
	9.2.12 Provision Tables Screen

	9.3 SO Screens
	9.3.1 Application Control Screen
	9.3.2 Export Pop-Up Window
	9.3.3 Import Pop-Up Window
	9.3.4 Tables Screen
	9.3.5 Provision Tables Screen

	9.4 System Options

	10 APIs
	10.1 The EDL API
	10.1.1 API to Manipulate the Diameter Header
	10.1.2 API to Manipulate the Diameter AVPs
	10.1.3 API to Manipulate the Diameter Grouped AVPs

	10.2 Diameter Transaction Stateful APIs
	10.2.1 Internal Variables
	10.2.2 Diameter Transaction Context Variables

	10.3 Read DCA App Configuration Data
	10.4 Routing API
	10.5 Debugging API
	10.6 Custom MEAL API
	10.6.1 Counter Template API
	10.6.2 Rate Template
	10.6.3 Basic Template
	10.6.4 Event Template

	10.7 UDR API
	10.7.1 The Prototype of Queries and Query Results
	10.7.1.1 Specifying the Query
	10.7.1.2 Retrieving the Query Result

	10.7.2 The UDR API Functions

	A.1 Notes

